\beginsection 1.3 Prove $1^3+2^3+\cdots+n^3=(1+2+\cdots+n)^2$ for all natural numbers $n$. \medskip Induction Step 1: Show that $P_1$ is true. $$P_1=1^3=1^2$$ Induction Step 2: Show that $P_n+(n+1)^3=P_{n+1}$. Note that $1+2+\cdots+n=n(n+1)/2$. $$\eqalign{ P_n+(n+1)^3&=[n(n+1)/2]^2+(n+1)^3\cr &=(n+1)^2[(n/2)^2+(n+1)]\cr &=(n+1)^2(n^2/4+n+1)\cr \cr P_{n+1}&=[n(n+1)/2+(n+1)]^2\cr &=[(n+1)(n/2+1)]^2\cr &=(n+1)^2(n/2+1)^2\cr &=(n+1)^2(n^2/4+n+1)\cr }$$