\beginsection{3.1} (a) Which of the properties A1--A4, M1--M4, DL, O1--O5 fail for the natural numbers $N$? \medskip A1. $a+(b+c)=(a+b+c)$ A2. $a+b=b+a$ A3. $a+0=a$ A4. For each $a$ there is as element $-a$ such that $a+(-a)=0$. {\it Fails, no negative numbers.} M1. $a(bc)=(ab)c$ M2. $ab=ba$ M3. $a\cdot1=a$ M4. For each $a\ne0$ there is an element $a^{-1}$ such that $aa^{-1}=1$. {\it Fails, no multiplicative inverse.} DL. $a(b+c)=ab+ac$ O1. Either $a\le b$ or $b\le a$. O2. If $a\le b$ and $b\le a$ then $a=b$. O3. If $a\le b$ and $b\le c$ then $a\le c$. O4. If $a\le b$ then $a+c\le b+c$. O5. If $a\le b$ and $0\le c$ then $ac\le bc$. {\it Interesting since $0\not\in N$.} \medskip (b) Which of these properties fail for the set of integers $Z$? \medskip M4, no multiplicative inverse.