\parindent=0pt {\tt ;\ Page\ references\ are\ for\ the\ book\ "Gravitation."} {\tt ;\ generic\ metric} {\tt (setq\ gdd\ (sum} {\tt \ \ (product\ (g00)\ (tensor\ x0\ x0))} {\tt \ \ (product\ (g11)\ (tensor\ x1\ x1))} {\tt \ \ (product\ (g22)\ (tensor\ x2\ x2))} {\tt \ \ (product\ (g33)\ (tensor\ x3\ x3))} {\tt ))} {\tt (gr)\ ;\ compute\ g,\ guu,\ GAMUDD,\ RUDDD,\ RDD,\ R,\ GDD,\ GUD\ and\ GUU} {\tt ;\ generic\ vectors} {\tt (setq\ u\ (sum} {\tt \ \ (product\ (u0)\ (tensor\ x0))} {\tt \ \ (product\ (u1)\ (tensor\ x1))} {\tt \ \ (product\ (u2)\ (tensor\ x2))} {\tt \ \ (product\ (u3)\ (tensor\ x3))} {\tt ))} {\tt (setq\ v\ (sum} {\tt \ \ (product\ (v0)\ (tensor\ x0))} {\tt \ \ (product\ (v1)\ (tensor\ x1))} {\tt \ \ (product\ (v2)\ (tensor\ x2))} {\tt \ \ (product\ (v3)\ (tensor\ x3))} {\tt ))} {\tt (setq\ w\ (sum} {\tt \ \ (product\ (w0)\ (tensor\ x0))} {\tt \ \ (product\ (w1)\ (tensor\ x1))} {\tt \ \ (product\ (w2)\ (tensor\ x2))} {\tt \ \ (product\ (w3)\ (tensor\ x3))} {\tt ))} $$V_{[\mu\nu\lambda]}={1\over3!} (V_{\mu\nu\lambda} +V_{\nu\lambda\mu} +V_{\lambda\mu\nu} -V_{\nu\mu\lambda} -V_{\mu\lambda\nu} -V_{\lambda\nu\mu} )$$ {\tt ;\ how\ to\ antisymmetrize\ three\ indices\ (p.\ 86)} {\tt (setq\ V\ (sum} {\tt \ \ (product\ 1/6\ V)} {\tt \ \ (product\ 1/6\ (transpose12\ (transpose23\ V)))\ ;\ nu\ lambda\ mu\ ->\ mu\ nu\ lambda} {\tt \ \ (product\ 1/6\ (transpose23\ (transpose12\ V)))\ ;\ lambda\ mu\ nu\ ->\ mu\ nu\ lambda} {\tt \ \ (product\ -1/6\ (transpose12\ V))\ \ \ \ \ \ \ \ \ \ \ \ \ \ ;\ nu\ mu\ lambda\ ->\ mu\ nu\ lambda} {\tt \ \ (product\ -1/6\ (transpose23\ V))\ \ \ \ \ \ \ \ \ \ \ \ \ \ ;\ mu\ lambda\ nu\ ->\ mu\ nu\ lambda} {\tt \ \ (product\ -1/6\ (transpose13\ V))\ \ \ \ \ \ \ \ \ \ \ \ \ \ ;\ lambda\ nu\ mu\ ->\ mu\ nu\ lambda} {\tt ))} $$[{\bf u},{\bf v}]= (u^\beta{v^\alpha}_{,\beta}-v^\beta{u^\alpha}_{,\beta}){\bf e}_\alpha$$ {\tt ;\ commutator\ (p.\ 206)} {\tt (define\ commutator\ (sum} {\tt \ \ (contract13\ (product\ +1\ arg1\ (gradient\ arg2)))} {\tt \ \ (contract13\ (product\ -1\ arg2\ (gradient\ arg1)))} {\tt ))} $${\Gamma^\alpha}_{\mu\nu}=\hbox{$1\over2$}g^{\alpha\beta} (g_{\beta\mu,\nu}+g_{\beta\nu,\mu}-g_{\mu\nu,\beta})$$ {\tt (print\ "connection\ coefficients\ (p.\ 210)")} {\tt (setq\ temp\ (gradient\ gdd))} {\tt (setq\ Gamma\ (contract23\ (product\ 1/2\ guu\ (sum} {\tt \ \ temp} {\tt \ \ (transpose23\ temp)} {\tt \ \ (product\ -1\ (transpose12\ (transpose23\ temp)))} {\tt ))))} {\tt ;\ check} {\tt (print\ (equal\ Gamma\ GAMUDD))} $${T^\alpha}_{;\gamma}={T^\alpha}_{,\gamma}+ T^\mu{\Gamma^\alpha}_{\mu\gamma}$$ {\tt ;\ covariant\ derivative\ of\ a\ vector\ (p.\ 211)} {\tt (define\ covariant-derivative\ (sum} {\tt \ \ (gradient\ arg)} {\tt \ \ (contract13\ (product\ arg\ GAMUDD))} {\tt ))} $${G^{\mu\nu}}_{;\nu}=0$$ {\tt (print\ "divergence\ of\ einstein\ is\ zero\ (p.\ 222)")} {\tt ;\ covariant-derivative-of-up-up\ is\ already\ defined\ in\ grlib} {\tt (setq\ temp\ (covariant-derivative-of-up-up\ GUU))} {\tt (setq\ temp\ (contract23\ temp))\ ;\ sum\ over\ 2nd\ and\ 3rd\ indices} {\tt (print\ (equal\ temp\ 0))} $${R^\alpha}_{\beta\gamma\delta}= {\partial{\Gamma^\alpha}_{\beta\delta}\over\partial x^\gamma}- {\partial{\Gamma^\alpha}_{\beta\gamma}\over\partial x^\delta}+ {\Gamma^\alpha}_{\mu\gamma}{\Gamma^\mu}_{\beta\delta}- {\Gamma^\alpha}_{\mu\delta}{\Gamma^\mu}_{\beta\gamma}$$ {\tt (print\ "computing\ riemann\ tensor\ (p.\ 219)")} {\tt (setq\ temp1\ (gradient\ GAMUDD))} {\tt (setq\ temp2\ (contract24\ (product\ GAMUDD\ GAMUDD)))} {\tt (setq\ riemann\ (sum} {\tt \ \ (transpose34\ temp1)} {\tt \ \ (product\ -1\ temp1)} {\tt \ \ (transpose23\ temp2)} {\tt \ \ (product\ -1\ (transpose34\ (transpose23\ temp2)))} {\tt ))} {\tt ;\ check} {\tt (print\ (equal\ riemann\ RUDDD))} $$T_{\alpha\beta;\gamma}=T_{\alpha\beta,\gamma} -T_{\mu\beta}{\Gamma^\mu}_{\alpha\gamma} -T_{\alpha\mu}{\Gamma^\mu}_{\beta\gamma}$$ {\tt ;\ p.\ 259} {\tt (define\ covariant-derivative-of-down-down\ (prog\ (temp)} {\tt \ \ (setq\ temp\ (product\ arg\ GAMUDD))} {\tt \ \ (return\ (sum} {\tt \ \ \ \ (gradient\ arg)} {\tt \ \ \ \ (product\ -1\ (transpose12\ (contract13\ temp)))} {\tt \ \ \ \ (product\ -1\ (contract23\ temp))} {\tt \ \ ))} {\tt ))} $${T^\alpha}_{\beta;\gamma}={T^\alpha}_{\beta,\gamma}+ {T^\mu}_\beta{\Gamma^\alpha}_{\mu\gamma}- {T^\alpha}_\mu{\Gamma^\mu}_{\beta\gamma}$$ {\tt (define\ covariant-derivative-of-up-down\ (prog\ (temp)} {\tt \ \ (setq\ temp\ (product\ arg\ GAMUDD))} {\tt \ \ (return\ (sum} {\tt \ \ \ \ (gradient\ arg)} {\tt \ \ \ \ (transpose12\ (contract14\ temp))} {\tt \ \ \ \ (product\ -1\ (contract23\ temp))} {\tt \ \ ))} {\tt ))} $$\nabla_{\bf u}{\bf v}={v^\alpha}_{;\beta}u^{\beta}$$ {\tt (define\ directed-covariant-derivative} {\tt \ \ (contract23\ (product\ (covariant-derivative\ arg1)\ arg2))} {\tt )} $$\nabla_{\bf u}{\bf v}-\nabla_{\bf v}{\bf u}=[{\bf u},{\bf v}]$$ {\tt (print\ "symmetry\ of\ covariant\ derivative\ (p.\ 252)")} {\tt (setq\ temp1\ (sum} {\tt \ \ (directed-covariant-derivative\ v\ u)} {\tt \ \ (product\ -1\ (directed-covariant-derivative\ u\ v))} {\tt ))} {\tt (setq\ temp2\ (commutator\ u\ v))} {\tt (equal\ temp1\ temp2)} $$\nabla_{\bf u}(f{\bf v})= f\nabla_{\bf u}{\bf v}+{\bf v}\partial_{\bf u}f$$ {\tt (print\ "covariant\ derivative\ chain\ rule\ (p.\ 252)")} {\tt (setq\ temp1\ (directed-covariant-derivative\ (product\ (f)\ v)\ u))} {\tt (setq\ temp2\ (sum} {\tt \ \ (product\ (f)\ (directed-covariant-derivative\ v\ u))} {\tt \ \ (product\ v\ (contract12\ (product\ (gradient\ (f))\ u)))} {\tt ))} {\tt (print\ (equal\ temp1\ temp2))} $$\nabla_{{\bf v}+{\bf w}}{\bf u}= \nabla_{\bf v}{\bf u}+\nabla_{\bf w}{\bf u}$$ {\tt (print\ "additivity\ of\ covariant\ derivative\ (p.\ 257)")} {\tt (setq\ temp1\ (directed-covariant-derivative\ u\ (sum\ v\ w)))} {\tt (setq\ temp2\ (sum} {\tt \ \ (directed-covariant-derivative\ u\ v)} {\tt \ \ (directed-covariant-derivative\ u\ w)} {\tt ))} {\tt (print\ (equal\ temp1\ temp2))} $${R^\alpha}_{\beta\gamma\delta}={R^\alpha}_{\beta[\gamma\delta]}$$ {\tt (print\ "riemann\ is\ antisymmetric\ on\ last\ two\ indices\ (p.\ 286)")} {\tt (setq\ temp\ (sum} {\tt \ \ (product\ 1/2\ RUDDD)} {\tt \ \ (product\ -1/2\ (transpose34\ RUDDD))} {\tt ))} {\tt (print\ (equal\ RUDDD\ temp))} $${R^\alpha}_{[\beta\gamma\delta]}=0$$ {\tt (print\ "riemann\ vanishes\ when\ antisymmetrized\ on\ last\ three\ indices\ (p.\ 286)")} {\tt (setq\ temp\ (sum} {\tt \ \ (product\ 1/6\ RUDDD)} {\tt \ \ (product\ 1/6\ (transpose34\ (transpose24\ RUDDD)))} {\tt \ \ (product\ 1/6\ (transpose34\ (transpose23\ RUDDD)))} {\tt \ \ (product\ -1/6\ (transpose23\ RUDDD))} {\tt \ \ (product\ -1/6\ (transpose34\ RUDDD))} {\tt \ \ (product\ -1/6\ (transpose24\ RUDDD))} {\tt ))} {\tt (print\ (equal\ temp\ 0))} $${G^{\alpha\beta}}_{\gamma\delta}= \hbox{$1\over2$}\epsilon^{\alpha\beta\mu\nu} {R_{\mu\nu}}^{\rho\sigma} \hbox{$1\over2$}\epsilon_{\rho\sigma\gamma\delta}$$ {\tt (print\ "double\ dual\ of\ riemann\ (p.\ 325)")} {\tt (setq\ temp\ (contract23\ (product\ gdd\ RUDDD)))\ ;\ lower\ 1st\ index} {\tt (setq\ temp\ (transpose34\ (contract35\ (product\ temp\ guu))))\ ;\ raise\ 3rd\ index} {\tt (setq\ RDDUU\ (contract45\ (product\ temp\ guu)))\ ;\ raise\ 4th\ index} {\tt (setq\ temp\ (product\ epsilon\ RDDUU))} {\tt (setq\ temp\ (contract35\ temp))\ ;\ sum\ over\ mu} {\tt (setq\ temp\ (contract34\ temp))\ ;\ sum\ over\ nu} {\tt (setq\ temp\ (product\ temp\ epsilon))} {\tt (setq\ temp\ (contract35\ temp))\ ;\ sum\ over\ rho} {\tt (setq\ temp\ (contract34\ temp))\ ;\ sum\ over\ sigma} {\tt (setq\ GUUDD\ (product\ -1/4\ temp))\ ;\ negative\ due\ to\ levi-civita\ tensor} {\tt ;\ check} {\tt (print\ (equal} {\tt \ \ (contract13\ GUUDD)} {\tt \ \ GUD} {\tt ))} $${B^\mu}_{;\alpha\beta}-{B^\mu}_{;\beta\alpha}= {R^\mu}_{\nu\beta\alpha}B^\nu$$ {\tt (print\ "noncommutation\ of\ covariant\ derivatives\ (p.\ 389)")} {\tt (setq\ B\ (sum} {\tt \ \ (product\ (B0)\ (tensor\ x0))} {\tt \ \ (product\ (B1)\ (tensor\ x1))} {\tt \ \ (product\ (B2)\ (tensor\ x2))} {\tt \ \ (product\ (B3)\ (tensor\ x3))} {\tt ))} {\tt (setq\ temp\ (covariant-derivative-of-up-down\ (covariant-derivative\ B)))} {\tt (setq\ temp1\ (sum\ temp\ (product\ -1\ (transpose23\ temp))))} {\tt (setq\ temp2\ (transpose23\ (contract25\ (product\ RUDDD\ B))))} {\tt (print\ (equal\ temp1\ temp2))} {\tt (print\ "bondi\ metric")} {\tt ;\ erase\ any\ definitions\ for\ U,\ V,\ beta\ and\ gamma} {\tt (setq\ U\ (quote\ U))} {\tt (setq\ V\ (quote\ V))} {\tt (setq\ beta\ (quote\ beta))} {\tt (setq\ gamma\ (quote\ gamma))} {\tt ;\ erase\ any\ definitions\ for\ u,\ r,\ theta\ and\ phi} {\tt (setq\ u\ (quote\ u))} {\tt (setq\ r\ (quote\ r))} {\tt (setq\ theta\ (quote\ theta))} {\tt (setq\ phi\ (quote\ phi))} {\tt ;\ new\ coordinate\ system} {\tt (setq\ x0\ u)} {\tt (setq\ x1\ r)} {\tt (setq\ x2\ theta)} {\tt (setq\ x3\ phi)} {\tt ;\ U,\ V,\ beta\ and\ gamma\ are\ functions\ of\ u,\ r\ and\ theta} $$g_{uu}=Ve^{2\beta}/r-U^2r^2e^{2\gamma}$$ {\tt (setq\ g\_uu\ (sum} {\tt \ \ (product} {\tt \ \ \ \ (V\ u\ r\ theta)} {\tt \ \ \ \ (power\ r\ -1)} {\tt \ \ \ \ (power\ e\ (product\ 2\ (beta\ u\ r\ theta)))} {\tt \ \ )} {\tt \ \ (product} {\tt \ \ \ \ -1} {\tt \ \ \ \ (power\ (U\ u\ r\ theta)\ 2)} {\tt \ \ \ \ (power\ r\ 2)} {\tt \ \ \ \ (power\ e\ (product\ 2\ (gamma\ u\ r\ theta)))} {\tt \ \ )} {\tt ))} $$g_{ur}=2e^{2\beta}$$ {\tt (setq\ g\_ur\ (product\ 2\ (power\ e\ (product\ 2\ (beta\ u\ r\ theta)))))} $$g_{u\theta}=2Ur^2e^{2\gamma}$$ {\tt (setq\ g\_utheta\ (product} {\tt \ \ 2} {\tt \ \ (U\ u\ r\ theta)} {\tt \ \ (power\ r\ 2)} {\tt \ \ (power\ e\ (product\ 2\ (gamma\ u\ r\ theta)))} {\tt ))} $$g_{\theta\theta}=-r^2e^{2\gamma}$$ {\tt (setq\ g\_thetatheta\ (product} {\tt \ \ -1} {\tt \ \ (power\ r\ 2)} {\tt \ \ (power\ e\ (product\ 2\ (gamma\ u\ r\ theta)))} {\tt ))} $$g_{\phi\phi}=-r^2e^{-2\gamma}\sin^2\theta$$ {\tt (setq\ g\_phiphi\ (product} {\tt \ \ -1} {\tt \ \ (power\ r\ 2)} {\tt \ \ (power\ e\ (product\ -2\ (gamma\ u\ r\ theta)))} {\tt \ \ (power\ (sin\ theta)\ 2)} {\tt ))} {\tt ;\ metric\ tensor} {\tt (setq\ gdd\ (sum} {\tt \ \ (product\ g\_uu\ (tensor\ u\ u))} {\tt \ \ (product\ g\_ur\ (tensor\ u\ r))} {\tt \ \ (product\ g\_ur\ (tensor\ r\ u))} {\tt \ \ (product\ g\_utheta\ (tensor\ u\ theta))} {\tt \ \ (product\ g\_utheta\ (tensor\ theta\ u))} {\tt \ \ (product\ g\_thetatheta\ (tensor\ theta\ theta))} {\tt \ \ (product\ g\_phiphi\ (tensor\ phi\ phi))} {\tt ))} {\tt (gr)\ ;\ compute\ g,\ guu,\ GAMUDD,\ RUDDD,\ RDD,\ R,\ GDD,\ GUD\ and\ GUU} {\tt ;\ is\ covariant\ derivative\ of\ metric\ zero?} {\tt (print\ (equal\ (covariant-derivative-of-down-down\ gdd)\ 0))} {\tt ;\ is\ divergence\ of\ einstein\ zero?} {\tt (setq\ temp\ (contract23\ (covariant-derivative-of-up-up\ GUU)))} {\tt (print\ (equal\ temp\ 0))} \end