\magnification=1200 \raggedright \parindent=0pt {\bf Problem 1.} $$a=\pmatrix{1\cr-2\cr-1\cr},\quad b=\pmatrix{2\cr1\cr-2} $$ $$\langle a,b\rangle=a^\tau b=(1)(2)+(-2)(1)+(-1)(-2)=2-2+2=2$$ $$\langle b,b\rangle=b^\tau b=(2)(2)+(1)(1)+(-2)(-2)=9$$ $$|b|=\sqrt{\langle b,b\rangle}=3$$ $$3a=\pmatrix{3\cr-6\cr-3},\quad a+b=\pmatrix{3\cr-1\cr-3}$$ $$\langle3a,a+b\rangle=(3)(3)+(-6)(-1)+(-3)(-3)=9+6+9=24$$ $$\langle a,a\rangle=(1)(1)+(-2)(-2)+(-1)(-1)=6$$ $$|a|=\sqrt{\langle a,a\rangle}=\sqrt6$$ $$\theta=\cos^{-1}{\langle a,b\rangle\over|a||b|}=\cos^{-1}{2\over3\sqrt6}= \cos^{-1}{\sqrt2\over3\sqrt3}$$ \vfill\eject {\bf Problem 2.} The expression $x_1y_1+x_3y_3$ is not an inner product because for some $a\ne0$ we obtain the result $\langle a,a\rangle=0$. Specifically, for an $a$ in the set $\{(0,t,0):t\in{\cal R},t\ne0\}$ we obtain $\langle a,a\rangle=0$. \vfill\eject {\bf Problem 3.} $$ b_1=\pmatrix{0\cr0\cr1\cr0},\quad b_2=\pmatrix{1\cr1\cr2\cr1},\quad b_3=\pmatrix{1\cr0\cr1\cr1} $$ $$|b_1|=1,\quad\hat b_1=|b_1|^{-1}b_1=\pmatrix{0\cr0\cr1\cr0}$$ $$\langle b_2,\hat b_1\rangle=\pmatrix{1&1&2&1}\pmatrix{0\cr0\cr1\cr0}=2$$ $$b_2^\prime=b_2-\langle b_2,\hat b_1\rangle\hat b_1= \pmatrix{1\cr1\cr2\cr1}-2\pmatrix{0\cr0\cr1\cr0}=\pmatrix{1\cr1\cr0\cr1}$$ $$\hat b_2=|b_2^\prime|^{-1}b_2^\prime={1\over\sqrt3}\pmatrix{1\cr1\cr0\cr1}$$ $$\langle b_3,\hat b_1\rangle=\pmatrix{1&0&1&1}\pmatrix{0\cr0\cr1\cr0}=1$$ $$\langle b_3,\hat b_2\rangle={1\over\sqrt3}\pmatrix{1&0&1&1}\pmatrix{1\cr1\cr0\cr1} ={2\over\sqrt3}$$ $$b_3^\prime=b_3-\langle b_3,\hat b_1\rangle\hat b_1-\langle b_3,\hat b_2\rangle\hat b_2 =\pmatrix{1\cr0\cr1\cr1}-\pmatrix{0\cr0\cr1\cr0}-{2\over3}\pmatrix{1\cr1\cr0\cr1} =\pmatrix{1/3\cr-2/3\cr0\cr1/3}$$ $$|b_3^\prime|=\sqrt{(1/3)^2+(-2/3)^2+(1/3)^2}=\sqrt{6/9}=\sqrt{2/3}$$ $$\hat b_3=|b_3^\prime|^{-1}b_3^\prime=\sqrt{3/2}\pmatrix{1/3\cr-2/3\cr0\cr1/3} ={1\over\sqrt6}\pmatrix{1\cr-2\cr0\cr1}$$ Answer... $$ \hat b_1=\pmatrix{0\cr0\cr1\cr0},\quad \hat b_2={1\over\sqrt3}\pmatrix{1\cr1\cr0\cr1},\quad \hat b_3={1\over\sqrt6}\pmatrix{1\cr-2\cr0\cr1} $$ \end