#include "stdafx.h" #include "defs.h" #define DEBUG 0 extern void condense(void); static void __rationalize(void); static void __rationalize_tensor(void); static void multiply_denominators(U *); static void multiply_denominators_term(U *); static void multiply_denominators_factor(U *); static void __lcm(void); void rationalize(void) { int x = expanding; save(); __rationalize(); restore(); expanding = x; } static void __rationalize(void) { p1 = pop(); if (p1->k == TENSOR) { __rationalize_tensor(); return; } expanding = 0; if (car(p1) != symbol(ADD)) { push(p1); return; } #if DEBUG printf("rationalize: this is the input expr:\n"); printline(p1); #endif // get common denominator push(_one); multiply_denominators(p1); p2 = pop(); #if DEBUG printf("rationalize: this is the common denominator:\n"); printline(p2); #endif // multiply each term by common denominator push(_zero); p3 = cdr(p1); while (iscons(p3)) { push(p2); push(car(p3)); multiply(); add(); p3 = cdr(p3); } #if DEBUG printf("rationalize: original expr times common denominator:\n"); printline(stack[tos - 1]); #endif // collect common factors condense(); #if DEBUG printf("rationalize: after factoring:\n"); printline(stack[tos - 1]); #endif // divide by common denominator push(p2); divide(); #if DEBUG printf("rationalize: after dividing by common denom. (and we're done):\n"); printline(stack[tos - 1]); #endif } static void multiply_denominators(U *p) { if (car(p) == symbol(ADD)) { p = cdr(p); while (iscons(p)) { multiply_denominators_term(car(p)); p = cdr(p); } } else multiply_denominators_term(p); } static void multiply_denominators_term(U *p) { if (car(p) == symbol(MULTIPLY)) { p = cdr(p); while (iscons(p)) { multiply_denominators_factor(car(p)); p = cdr(p); } } else multiply_denominators_factor(p); } static void multiply_denominators_factor(U *p) { if (car(p) != symbol(POWER)) return; push(p); p = caddr(p); // like x^(-2) ? if (isnegativenumber(p)) { inverse(); __lcm(); return; } // like x^(-a) ? if (car(p) == symbol(MULTIPLY) && isnegativenumber(cadr(p))) { inverse(); __lcm(); return; } // no match pop(); } static void __rationalize_tensor(void) { int i, n; push(p1); eval(); // makes a copy p1 = pop(); if (p1->k != TENSOR) { // might be zero push(p1); return; } n = p1->u.tensor->nelem; for (i = 0; i < n; i++) { push(p1->u.tensor->elem[i]); rationalize(); p1->u.tensor->elem[i] = pop(); } push(p1); check_tensor(); } static char *s[] = { "rationalize(a/b+c/d)", // "1/b*1/d*(a*d+b*c)", "(a*d+b*c)/(b*d)", "rationalize(t*y/(t+y)+2*t^2*y*(2*t+y)^(-2))", // "t*y*1/(t+y)*(2*t+y)^(-2)*((2*t+y)^2+2*t*(t+y))", // "t*y*((2*t+y)^2+2*t*(t+y))/((t+y)*(2*t+y)^2)", // "t*y*(2*t*(t+y)+(2*t+y)^2)/((t+y)*(2*t+y)^2)", "t*y*(6*t*y+6*t^2+y^2)/((t+y)*(2*t+y)^2)", "rationalize(x^(-2*a)+x^(-4*a))", // "x^(-4*a)*(1+x^(2*a))", "(1+x^(2*a))/(x^(4*a))", "rationalize(x^(1/3)+x^(2/3))", "x^(1/3)*(1+x^(1/3))", }; void test_rationalize(void) { test(__FILE__, s, sizeof s / sizeof (char *)); } static void __lcm(void) { save(); p1 = pop(); p2 = pop(); push(p1); push(p2); multiply(); push(p1); push(p2); gcd(); divide(); restore(); }