#include "stdafx.h" #include "defs.h" #define MP_MIN_SIZE 2 #define MP_MAX_FREE 1000 double convert_rational_to_double(U *); double convert_bignum_to_double(unsigned int *); int ge(unsigned int *, unsigned int *, int); int mtotal, mfreecount; static unsigned int *free_stack[MP_MAX_FREE]; unsigned int * mnew(int n) { unsigned int *p; if (n < MP_MIN_SIZE) n = MP_MIN_SIZE; if (n == MP_MIN_SIZE && mfreecount) p = free_stack[--mfreecount]; else { p = (unsigned int *) malloc((n + 3) * sizeof (int)); if (p == 0) stop("malloc failure"); } p[0] = n; mtotal += n; return p + 3; } void mfree(unsigned int *p) { p -= 3; mtotal -= p[0]; if (p[0] == MP_MIN_SIZE && mfreecount < MP_MAX_FREE) free_stack[mfreecount++] = p; else free(p); } // convert int to bignum unsigned int * mint(int n) { unsigned int *p = mnew(1); if (n < 0) MSIGN(p) = -1; else MSIGN(p) = 1; MLENGTH(p) = 1; p[0] = abs(n); return p; } // copy bignum unsigned int * mcopy(unsigned int *a) { int i; unsigned int *b; b = mnew(MLENGTH(a)); MSIGN(b) = MSIGN(a); MLENGTH(b) = MLENGTH(a); for (i = 0; i < MLENGTH(a); i++) b[i] = a[i]; return b; } // a >= b ? int ge(unsigned int *a, unsigned int *b, int len) { int i; for (i = len - 1; i > 0; i--) if (a[i] == b[i]) continue; else break; if (a[i] >= b[i]) return 1; else return 0; } void add_numbers(void) { double a, b; if (isrational(stack[tos - 1]) && isrational(stack[tos - 2])) { qadd(); return; } save(); p2 = pop(); p1 = pop(); if (isdouble(p1)) a = p1->u.d; else a = convert_rational_to_double(p1); if (isdouble(p2)) b = p2->u.d; else b = convert_rational_to_double(p2); push_double(a + b); restore(); } void subtract_numbers(void) { double a, b; if (isrational(stack[tos - 1]) && isrational(stack[tos - 2])) { qsub(); return; } save(); p2 = pop(); p1 = pop(); if (isdouble(p1)) a = p1->u.d; else a = convert_rational_to_double(p1); if (isdouble(p2)) b = p2->u.d; else b = convert_rational_to_double(p2); push_double(a - b); restore(); } void multiply_numbers(void) { double a, b; if (isrational(stack[tos - 1]) && isrational(stack[tos - 2])) { qmul(); return; } save(); p2 = pop(); p1 = pop(); if (isdouble(p1)) a = p1->u.d; else a = convert_rational_to_double(p1); if (isdouble(p2)) b = p2->u.d; else b = convert_rational_to_double(p2); push_double(a * b); restore(); } void divide_numbers(void) { double a, b; if (isrational(stack[tos - 1]) && isrational(stack[tos - 2])) { qdiv(); return; } save(); p2 = pop(); p1 = pop(); if (iszero(p2)) stop("divide by zero"); if (isdouble(p1)) a = p1->u.d; else a = convert_rational_to_double(p1); if (isdouble(p2)) b = p2->u.d; else b = convert_rational_to_double(p2); push_double(a / b); restore(); } void invert_number(void) { unsigned int *a, *b; save(); p1 = pop(); if (iszero(p1)) stop("divide by zero"); if (isdouble(p1)) { push_double(1 / p1->u.d); restore(); return; } a = mcopy(p1->u.q.a); b = mcopy(p1->u.q.b); MSIGN(b) = MSIGN(a); MSIGN(a) = 1; p1 = alloc(); p1->k = NUM; p1->u.q.a = b; p1->u.q.b = a; push(p1); restore(); } int compare_rationals(U *a, U *b) { int t; unsigned int *ab, *ba; ab = mmul(a->u.q.a, b->u.q.b); ba = mmul(a->u.q.b, b->u.q.a); t = mcmp(ab, ba); mfree(ab); mfree(ba); return t; } int compare_numbers(U *a, U *b) { double x, y; if (isrational(a) && isrational(b)) return compare_rationals(a, b); if (isdouble(a)) x = a->u.d; else x = convert_rational_to_double(a); if (isdouble(b)) y = b->u.d; else y = convert_rational_to_double(b); if (x < y) return -1; if (x > y) return 1; return 0; } void negate_number(void) { save(); p1 = pop(); if (iszero(p1)) { push(p1); restore(); return; } switch (p1->k) { case NUM: p2 = alloc(); p2->k = NUM; p2->u.q.a = mcopy(p1->u.q.a); p2->u.q.b = mcopy(p1->u.q.b); MSIGN(p2->u.q.a) *= -1; push(p2); break; case DOUBLE: push_double(-p1->u.d); break; default: stop("bug caught in mp_negate_number"); break; } restore(); } void bignum_truncate(void) { unsigned int *a; save(); p1 = pop(); a = mdiv(p1->u.q.a, p1->u.q.b); p1 = alloc(); p1->k = NUM; p1->u.q.a = a; p1->u.q.b = mint(1); push(p1); restore(); } void mp_numerator(void) { save(); p1 = pop(); if (p1->k != NUM) { push(one); restore(); return; } p2 = alloc(); p2->k = NUM; p2->u.q.a = mcopy(p1->u.q.a); p2->u.q.b = mint(1); push(p2); restore(); } void mp_denominator(void) { save(); p1 = pop(); if (p1->k != NUM) { push(one); restore(); return; } p2 = alloc(); p2->k = NUM; p2->u.q.a = mcopy(p1->u.q.b); p2->u.q.b = mint(1); push(p2); restore(); } void bignum_power_number(int expo) { unsigned int *a, *b, *t; save(); p1 = pop(); a = mpow(p1->u.q.a, abs(expo)); b = mpow(p1->u.q.b, abs(expo)); if (expo < 0) { t = a; a = b; b = t; MSIGN(a) = MSIGN(b); MSIGN(b) = 1; } p1 = alloc(); p1->k = NUM; p1->u.q.a = a; p1->u.q.b = b; push(p1); restore(); } double convert_bignum_to_double(unsigned int *p) { int i; double d = 0.0; for (i = MLENGTH(p) - 1; i >= 0; i--) d = 4294967296.0 * d + p[i]; if (MSIGN(p) == -1) d = -d; return d; } double convert_rational_to_double(U *p) { int i, n, na, nb; double a = 0.0, b = 0.0; na = MLENGTH(p->u.q.a); nb = MLENGTH(p->u.q.b); if (na < nb) n = na; else n = nb; for (i = 0; i < n; i++) { a = a / 4294967296.0 + p->u.q.a[i]; b = b / 4294967296.0 + p->u.q.b[i]; } if (na > nb) for (i = nb; i < na; i++) { a = a / 4294967296.0 + p->u.q.a[i]; b = b / 4294967296.0; } if (na < nb) for (i = na; i < nb; i++) { a = a / 4294967296.0; b = b / 4294967296.0 + p->u.q.b[i]; } if (MSIGN(p->u.q.a) == -1) a = -a; return a / b; } void push_integer(int n) { save(); p1 = alloc(); p1->k = NUM; p1->u.q.a = mint(n); p1->u.q.b = mint(1); push(p1); restore(); } void push_double(double d) { save(); p1 = alloc(); p1->k = DOUBLE; p1->u.d = d; push(p1); restore(); } void push_rational(int a, int b) { save(); p1 = alloc(); p1->k = NUM; p1->u.q.a = mint(a); p1->u.q.b = mint(b); /* FIXME -- normalize */ push(p1); restore(); } int pop_integer(void) { int n; save(); p1 = pop(); switch (p1->k) { case NUM: if (isinteger(p1) && MLENGTH(p1->u.q.a) == 1) { n = p1->u.q.a[0]; if (n & 0x80000000) n = 0x80000000; else n *= MSIGN(p1->u.q.a); } else n = 0x80000000; break; case DOUBLE: n = (int) p1->u.d; if ((double) n != p1->u.d) n = 0x80000000; break; default: n = 0x80000000; break; } restore(); return n; } int mp_isfraction(U *p) { if (p->k == NUM && !MEQUAL(p->u.q.b, 1)) return 1; else return 0; } void print_double(U *p, int flag) { static char buf[80]; sprintf(buf, "%g", p->u.d); if (flag == 1 && *buf == '-') print_str(buf + 1); else print_str(buf); } void bignum_scan_integer(char *s) { unsigned int *a; char sign; save(); sign = *s; if (sign == '+' || sign == '-') s++; a = mscan(s); p1 = alloc(); p1->k = NUM; p1->u.q.a = a; p1->u.q.b = mint(1); push(p1); if (sign == '-') negate(); restore(); } void bignum_scan_float(char *s) { push_double(atof(s)); } // print as unsigned void print_number(U *p) { char *s; static char buf[100]; switch (p->k) { case NUM: s = mstr(p->u.q.a); if (*s == '+' || *s == '-') s++; print_str(s); if (mp_isfraction(p)) { print_str("/"); s = mstr(p->u.q.b); print_str(s); } break; case DOUBLE: sprintf(buf, "%g", p->u.d); if (*buf == '+' || *buf == '-') print_str(buf + 1); else print_str(buf); break; default: break; } } void gcd_numbers(void) { save(); p2 = pop(); p1 = pop(); // if (!isinteger(p1) || !isinteger(p2)) // stop("integer args expected for gcd"); p3 = alloc(); p3->k = NUM; p3->u.q.a = mgcd(p1->u.q.a, p2->u.q.a); p3->u.q.b = mgcd(p1->u.q.b, p2->u.q.b); MSIGN(p3->u.q.a) = 1; push(p3); restore(); } void power_numbers(void) { double a, b, base, expo, result, theta; if (stack[tos - 1]->k == NUM && stack[tos - 2]->k == NUM) { qpow(); return; } expo = pop_double(); base = pop_double(); if (base == 0.0 && expo < 0.0) stop("divide by zero"); errno = 0; result = pow(base, expo); #ifdef MAC if (errno || isnan(result)) { #else if (errno) { #endif errno = 0; result = pow(fabs(base), expo); theta = M_PI * expo; a = cos(theta); b = sin(theta); if (fabs(a) < 1e-10) a = 0.0; if (fabs(b) < 1e-10) b = 0.0; push_double(result * a); push_double(result * b); push(imaginaryunit); multiply(); add(); return; } push_double(result); } double pop_double(void) { double d; save(); p1 = pop(); switch (p1->k) { case NUM: d = convert_rational_to_double(p1); break; case DOUBLE: d = p1->u.d; break; default: d = 0.0; break; } restore(); return d; } void bignum_float(void) { double d; d = convert_rational_to_double(pop()); push_double(d); } static unsigned int *__factorial(int); void bignum_factorial(int n) { save(); p1 = alloc(); p1->k = NUM; p1->u.q.a = __factorial(n); p1->u.q.b = mint(1); push(p1); restore(); } static unsigned int * __factorial(int n) { int i; unsigned int *a, *b, *t; if (n == 0 || n == 1) { a = mint(1); return a; } a = mint(2); b = mint(0); for (i = 3; i <= n; i++) { b[0] = (unsigned int) i; t = mmul(a, b); mfree(a); a = t; } mfree(b); return a; } static unsigned int mask[32] = { 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, }; void mp_set_bit(unsigned int *x, unsigned int k) { x[k / 32] |= mask[k % 32]; } void mp_clr_bit(unsigned int *x, unsigned int k) { x[k / 32] &= ~mask[k % 32]; } void mshiftright(unsigned int *a) { int c, i, n; n = MLENGTH(a); c = 0; for (i = n - 1; i >= 0; i--) if (a[i] & 1) { a[i] = (a[i] >> 1) | c; c = 0x80000000; } else { a[i] = (a[i] >> 1) | c; c = 0; } if (n > 1 && a[n - 1] == 0) MLENGTH(a) = n - 1; }