Tips
The following examples can be pasted into the Edit Script window.
Index
Enter
abs((a,b,c))
Result
1/2
2 2 2
(a + b + c )
Enter
A = ((a,b),(c,d))
adj(A)
Result
d -b
-c a
The inverse of a matrix is equal to the adjunct divided by the determinant.
Enter
inv(A) - adj(A) / det(A)
Result
0
Example
and(A = B, B = C)
Enter arg(1 + exp(i pi/3)) Result 1/6 pi
Enter
binomial(10,5)
Result
252
Example
check(A = B)
Enter
2 a (x + 1)
Result
2 a + 2 a x
Enter
condense(last)
Result
2 a (x + 1)
Enter
conj(3 + 4 i)
Result
3 - 4 i
Enter
A = ((a,b),(c,d))
contract(A,1,2)
Result
a + d
Enter d(x^2,x) Result 2 xFor tensor f the derivative of each element is computed.
Enter
d((x,x^2),x)
Result
1
2 x
Functions with no arguments are treated as dependent on any variable.
Enter
d(f(),(x,y))
Result
d(f(),x)
d(f(),y)
Since partial derivatives commute, multi-derivatives are ordered to produce a
canonical form.
Enter
d(d(f(),y),x)
Result
d(d(f(),x),y)
The following table shows the various forms that can be used to compute
multiderivatives.
Form Equivalent form d(f,2) d(d(f,x),x) d(f,x,2) d(d(f,x),x) d(f,x,x) d(d(f,x),x) d(f,x,2,y,2) d(d(d(d(f,x),x),y),y) d(f,x,x,y,y) d(d(d(d(f,x),x),y),y)
Enter
denominator(a/b)
Result
b
Enter
A = ((a,b),(c,d))
det(A)
Result
a d - b c
Enter
A = (1,2,3,4)
dim(A)
Result
4
Enter
A = ((1,2,3),(4,5,6))
dim(A,1)
Result
2
Enter
dim(A,2)
Result
3
| Gamma | Γ | alpha | α | mu | μ | ||
| Delta | Δ | beta | β | nu | ν | ||
| Theta | Θ | gamma | γ | xi | ξ | ||
| Lambda | Λ | delta | δ | pi | π | ||
| Xi | Ξ | epsilon | ε | rho | ρ | ||
| Pi | Π | zeta | ζ | sigma | σ | ||
| Sigma | Σ | eta | η | tau | τ | ||
| Upsilon | Υ | theta | θ | upsilon | υ | ||
| Phi | Φ | iota | ι | phi | φ | ||
| Psi | Ψ | kappa | κ | chi | χ | ||
| Omega | Ω | lambda | λ | psi | ψ | ||
| omega | ω |
Enter
A = (A1,A2,A3)
B = (B1,B2,B3)
dot(A,B)
Result
A1 B1 + A2 B2 + A3 B3
The dot product is equivalent to an outer product followed by a contraction
across the inner indices.
Enter
A = hilbert(10)
dot(A,A) - contract(outer(A,A),2,3)
Result
0
Example 1.
Enter draw(5(cos(t),sin(t)))
Example 2.
Enter draw(5(cos(3t),sin(5t)))
Example 1. Check the relation AX = lambda X where lambda is an eigenvalue and X is the associated eigenvector.
Enter
A = hilbert(3)
eigen(A)
lambda = D[1,1]
X = Q[1]
dot(A,X) - lambda X
Result
-1.16435e-14
-6.46705e-15
-4.55191e-15
Example 2: Check the relation A = QTDQ.
Enter A - dot(transpose(Q),D,Q) Result 6.27365e-12 -1.58236e-11 1.81902e-11 -1.58236e-11 -1.95365e-11 2.56514e-12 1.81902e-11 2.56514e-12 1.32627e-11
Enter draw(erf(x))
Enter draw(erfc(x))
Enter
A = quote(sin(pi/6))
A
Result
1
sin(--- pi)
6
Enter
eval(A)
Result
1
---
2
Enter
exp(1.0)
Result
2.71828
Enter
exp(a) exp(b)
Result
exp(a + b)
Enter
expcos(x)
Result
1 1
--- exp(-i x) + --- exp(i x)
2 2
Enter
expsin(x)
Result
1 1
--- i exp(-i x) - --- i exp(i x)
2 2
Enter
factor(12345)
Result
3 5 823
The second form factors polynomial p in x.
The argument x can be omitted in which case the computer will
guess which symbol to use.
Enter
factor(x^3 + x^2 + x + 1)
Result
2
(1 + x) (1 + x )
Enter
100!
Result
93326215443944152681699238856266700490715968264381621468592963895217599993229915
608941463976156518286253697920827223758251185210916864000000000000000000000000
Enter
Y = A exp(-i k x) + B exp(i k x)
filter(Y exp(-i k x), x)
Result
B
Enter
float(100!)
Result
9.33262e+157
Enter
for(k,1,4,print(1/k,tab(10),1/k^2))
Result
1 1
1 1
--- ---
2 4
1 1
--- ---
3 9
1 1
--- ----
4 16
Enter
hermite(x,3)
Result
3
-12 x + 8 x
Enter
hilbert(3)
Result
1 1
1 --- ---
2 3
1 1 1
--- --- ---
2 3 4
1 1 1
--- --- ---
3 4 5
Enter imag(1 + exp(i pi/3)) Result 1/2 3^(1/2)
Enter
A = (A1,A2,A3)
B = (B1,B2,B3)
inner(A,B)
Result
A1 B1 + A2 B2 + A3 B3
Enter
integral(log(x),x)
Result
-x + x log(x)
Enter
A = ((a,b),(c,d))
inv(A)
Result
d b
----------- - -----------
a d - b c a d - b c
c a
- ----------- -----------
a d - b c a d - b c
Enter
isprime(9007199254740991)
Result
0
Enter
isprime(2^53 - 111)
Result
1
Enter
laguerre(x,2)
Result
1 2
1 - 2 x + --- x
2
Enter
laguerre(x,2,a)
Result
3 1 2 1 2
1 + --- a - 2 x - a x + --- a + --- x
2 2 2
Enter
lcm(2,3,4,x)
Result
12 x
Enter
legendre(x,2)
Result
1 3 2
- --- + --- x
2 2
Enter
legendre(x,2,0)
Result
1 3 2
- --- + --- x
2 2
Enter
legendre(x,2,1)
Result
1/2
2
-3 x (1 - x )
Enter
log(-10.0)
Result
2.30259 + i π
Enter mag(1 + exp(i pi/3)) Result 3^(1/2)
Example
not(A = B)
Enter
numerator(a/b)
Result
a
Example
or(A = B, A = C)
Enter
A = (A1,A2,A3)
B = (B1,B2,B3)
outer(A,B)
Result
A1 B1 A1 B2 A1 B3
A2 B1 A2 B2 A2 B3
A3 B1 A3 B2 A3 B3
Enter
polar(1 + exp(i pi/3))
Result
1/6 1/2
(-1) 3
Enter
prime(10000)
Result
104729
Enter
product(k,1,3,1/(1-(1/prime(k)^s)))
Result
1
----------------------------------
1 1 1
(1 - ----) (1 - ----) (1 - ----)
s s s
2 3 5
Enter
n = 3
n
Result
3
Enter
n = quote(n)
n
Result
n
Enter
U = (u1,u2,u3,u4)
rank(U)
Result
1
Enter
rationalize(1/x + 1/y)
Result
x + y
-------
x y
Rationalize can often simplify expressions.
Enter
A = ((a,b),(c,d))
B = inv(A)
dot(A,B)
Result
a d b c
----------- - ----------- 0
a d - b c a d - b c
a d b c
0 ----------- - -----------
a d - b c a d - b c
Enter
rationalize(last)
Result
1 0
0 1
Enter real(1 + exp(i pi/3)) Result 3/2
Enter rect(1 + exp(i pi/3)) Result 3/2 + 1/2 i 3^(1/2)
Enter
(x + 1)(x + 2)
Result
2
x + 3 x + 2
Enter
roots
Result
-2
-1
Enter
(A-B)/(B-A)
Result
A B
-------- - --------
-A + B -A + B
Enter
simplify(last)
Result
-1
Enter
A = ((A11,A12),(A21,A22))
det(A) inv(A) - adj(A)
Result
((-A22 + A11 A22^2 / (A11 A22 - A12 A21) - A12 A21 A22 / (A11 A22 - A12 A21),
A12 - A11 A12 A22 / (A11 A22 - A12 A21) + A12^2 A21 / (A11 A22 - A12 A21)),
(A21 - A11 A21 A22 / (A11 A22 - A12 A21) + A12 A21^2 / (A11 A22 - A12 A21),
-A11 - A11 A12 A21 / (A11 A22 - A12 A21) + A11^2 A22 / (A11 A22 - A12 A21)))
Enter
simplify(last)
Result
0
The simplify function can return factored
(unexpanded)
expressions.
Factored expressions can fail in tests for equality.
The eval function can be used to expand factored expressions.
Enter
f = x^2
subst(sqrt(x),x,f)
Result
2
1/2
(x )
Enter
eval(last)
Result
x
Enter
sum(k,1,3,1/k^s)
Result
1 1
1 + ---- + ----
s s
2 3
Enter
taylor(1/cos(x),x,6)
Result
1 2 5 4 61 6
1 + --- x + ---- x + ----- x
2 24 720
Example
f(x) = test(x < 0, g(x), h(x))
Enter
A = ((a,b),(c,d))
trace(A)
Result
a + d
Note that trace is equivalent to contract.
Enter
trace(A) - contract(A,1,2)
Result
0
Enter
unit(4)
Result
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Enter
A = zero(2,2)
A[1,2] = a
A
Result
0 a
0 0