Click here for examples that can be pasted into Eigenmath's edit window.

Download Eigenmath.pdf


abs
adj
and
arccos
arccosh
arcsin
arcsinh
arctan
arctanh
arg
ceiling
check
choose
circexp
coeff
cofactor
conj
contract
cos
cosh
cross
curl
d
defint
deg
denominator
det
dim
do
dot
draw
erf
erfc
eval
exp
expand
expcos
expsin
factor
factorial
filter
float
floor
for
gcd
hermite
hilbert
imag
inner
integral
inv
isprime
laguerre
lcm
leading
legendre
log
mag
mod
not
nroots
numerator
or
outer
polar
prime
print
product
quote
quotient
rank
rationalize
real
rect
roots
simplify
sin
sinh
sqrt
stop
subst
sum
tan
tanh
taylor
test
transpose
unit
zero


abs(x)

Returns the absolute value or vector length of x. src

adj(m)

Returns the adjunct of matrix m. The inverse of m is equal to adj(m) divided by det(m). src

and(a,b,...)

Logical-and of predicate expressions. src

arccos(x)

Returns the inverse cosine of x. src

arccosh(x)

Returns the inverse hyperbolic cosine of x. src

arcsin(x)

Returns the inverse sine of x. src

arcsinh(x)

Returns the inverse hyperbolic sine of x. src

arctan(x)

Returns the inverse tangent of x. src

arctanh(x)

Returns the inverse hyperbolic tangent of x. src

arg(z)

Returns the angle of complex z. src

ceiling(x)

Returns the smallest integer not less than x. src

check(x)

If x is true then continue, else stop. src

choose(n,k)

Returns the number of combinations of n items taken k at a time. src

circexp(x)

Returns expression x with circular and hyperbolic functions converted to exponential forms. Sometimes this will simplify an expression. src

coeff(p,x,n)

Returns the coefficient of x to the n in polynomial p. The x argument can be omitted for polynomials in x. src

cofactor(m,i,j)

Returns the cofactor of m for row i and column j. src

conj(z)

Returns the complex conjugate of z. src

contract(a,i,j)

Returns "a" summed over indices i and j. If i and j are omitted then 1 and 2 are used. contract(m) is equivalent to the trace of matrix m. src

cos(x)

Returns the cosine of x. src

cosh(x)

Returns the hyperbolic cosine of x. src

cross(u,v)

Returns the cross product of vectors u and v.

curl(u)

Returns the curl of vector u.

d(f,x)

Returns the partial derivative of f with respect to x. src

defint(f,x,a,b)

Returns the definite integral of f with respect to x evaluated from "a" to b. The argument list can be extended for multiple integrals. For example, defint(f,x,a,b,y,c,d). src

deg(p,x)

Returns the degree of polynomial p(x). src

denominator(x)

Returns the denominator of expression x. src

det(m)

Returns the determinant of matrix m. src

dim(a,n)

Returns the cardinality of the nth index of tensor "a". src

do(a,b,...)

Evaluates each argument from left to right. Returns the result of the last argument. src

dot(a,b,...)

Returns the dot or inner product of tensors. src

draw(f,x)

Draws a graph of f(x). Drawing ranges can be set with xrange and yrange. src

erf(x)

Error function of x. src

erfc(x)

Complementary error function of x. src

eval(f,x,a)

Returns f evaluated at x=a. src

exp(x)

Returns the exponential of x. src

expand(r,x)

Returns the partial fraction expansion of the ratio of polynomials r in x. src

expcos(x)

Returns the exponential cosine of x. src

expsin(x)

Returns the exponential sine of x. src

factor(n)

Factors integer n. src

factor(p,x)

Factors polynomial p of x. The x can be omitted for polynomials in x. The polynomial should be factorable over integers. The argument list can be extended for multivariate polynomials. For example, factor(p,x,y) factors p over x and then over y. src

factorial(x)

Can be entered as x! src

filter(f,a,b,...)

Returns f excluding any terms containing a, b, etc. src

float(x)

Converts rational numbers and integers to floating point values. The symbol pi is also converted. src

floor(x)

Returns the largest integer not greater than x. src

for(i,j,k,a,b,...)

For i equals j through k evaluate a, b, etc. src

gcd(a,b,...)

Returns the greatest common divisor. src

hermite(x,n)

Returns the nth Hermite polynomial in x. src

hilbert(n)

Returns an n by n Hilbert matrix. src

imag(z)

Returns the imaginary part of complex z. src

inner(a,b,...)

Returns the inner product of tensors. Same as the dot product. src

integral(f,x)

Returns the integral of f with respect to x. src

inv(m)

Returns the inverse of matrix m. src

isprime(n)

Returns 1 if n is a prime number, returns zero otherwise. src

laguerre(x,n,a)

Returns the nth Laguerre polynomial in x. If "a" is omitted then a=0 is used. src

lcm(a,b,...)

Returns the least common multiple. src

leading(p,x)

Returns the leading coefficient of polynomial p in x. src

legendre(x,n,m)

Returns the nth Legendre polynomial in x. If m is omitted then m=0 is used. src

log(x)

Returns the natural logarithm of x. src

mag(z)

Returns the magnitude of complex z. src

mod(a,b)

Returns the remainder of the result of "a" divided by b. src

not(x)

Returns the logical negation of x. src

nroots(p,x)

Returns all of the roots, both real and complex, of polynomial p in x. The roots are computed numerically. The coefficients of p can be real or complex. src

numerator(x)

Returns the numerator of expression x. src

or(a,b,...)

Logical-or of predicate expressions. src

outer(a,b,...)

Returns the outer product of tensors. Also known as the tensor product. src

polar(z)

Returns complex z in polar form. src

prime(n)

Returns the nth prime number. The domain of n is 1 to 10000. src

print(a,b,...)

Evaluate expressions and print the results. Useful for printing from inside a "for" loop. src

product(i,j,k,f)

For i equals j through k evaluate f. Returns the product of all f. src

quote(x)

Returns expression x without evaluating it first. src

quotient(p,q,x)

Returns the quotient of polynomial p(x) over q(x). The last argument can be omitted for polynomials in x. The remainder can be calculated by p-q*quotient(p,q). src

rank(a)

Returns the number of indices that tensor "a" has. src

rationalize(x)

Returns x with everything over a common denominator. src

real(z)

Returns the real part of complex z. src

rect(z)

Returns complex z in rectangular form. src

roots(p,x)

Returns the values of x such that p(x)=0. The polynomial p should be factorable over integers. Returns a vector for multiple roots. src

simplify(x)

Returns x in a simpler form. src

sin(x)

Returns the sine of x. src

sinh(x)

Returns the hyperbolic sine of x. src

sqrt(x)

Returns the square root of x. src

stop()

In a script, it does what it says. src

subst(a,b,c)

Substitutes "a" for b in c and returns the result. src

sum(i,j,k,f)

For i equals j through k evaluate f. Returns the sum of all f. src

tan(x)

Returns the tangent of x. src

tanh(x)

Returns the hyperbolic tangent of x. src

taylor(f,x,n,a)

Returns the Taylor expansion of f(x) around x=a. If "a" is omitted then a=0 is used. The argument n is the degree of the expansion. src

test(a,b,c,d,...)

If "a" is true then b is returned else if c is true then d is returned, etc. If the number of arguments is odd then the last argument is returned when all else fails. src

transpose(a,i,j)

Returns the transpose of "a" with respect to indices i and j. If i and j are omitted then 1 and 2 are used. Hence a matrix can be transposed with a single argument. src

unit(n)

Returns an n by n identity matrix. src

zero(i,j,...)

Returns a null tensor with dimensions i, j, etc. Useful for creating a tensor and then setting the component values. src

SourceForge.net Logo