eigenmath/doc/manual/complex.tex

96 lines
1.8 KiB
TeX
Raw Permalink Normal View History

2008-09-02 02:57:43 +02:00
\section{Complex numbers}
2007-07-14 17:08:27 +02:00
When Eigenmath starts up, it defines the symbol $i$ as $i=\sqrt{-1}$.
Other than that, there is nothing special about $i$.
It is just a regular symbol that can be redefined and used for some other purpose if need be.
\medskip
\noindent
Complex quantities can be entered in rectangular or polar form.
\medskip
\verb$a+i*b$
$$a+ib$$
\verb$exp(i*pi/3)$
$$\exp({1\over3}i\pi)$$
\medskip
\noindent
Converting to rectangular or polar coordinates simplifies mixed forms.
\medskip
\verb$A=1+i$
\verb$B=sqrt(2)*exp(i*pi/4)$
\verb$A-B$
$$1+i-2^{1/2}\exp({1\over4}i\pi)$$
\verb$rect$
$$0$$
2007-08-31 16:09:32 +02:00
\medskip
2007-07-14 17:08:27 +02:00
\noindent
Rectangular complex quantities, when raised to a power, are multiplied out.
\medskip
\verb$(a+i*b)^2$
$$a^2-b^2+2iab$$
\medskip
\noindent
When $a$ and $b$ are numerical and the power is negative, the evaluation is done as follows.
$$(a+ib)^{-n}=\left[{a-ib\over(a+ib)(a-ib)}\right]^n=\left[{a-ib\over a^2+b^2}\right]^n$$
2007-08-31 16:09:32 +02:00
Of course, this causes $i$ to be removed from the denominator.
2007-07-14 17:08:27 +02:00
%For $n=1$ we have
%$${1\over a+ib}={a-ib\over a^2+b^2}$$
Here are a few examples.
\medskip
\verb$1/(2-i)$
$${2\over5}+{1\over5}i$$
\verb$(-1+3i)/(2-i)$
$$-1+i$$
2007-08-31 16:35:10 +02:00
\newpage
2007-07-14 17:08:27 +02:00
\noindent
The absolute value of a complex number returns its magnitude.
\medskip
\verb$abs(3+4*i)$
$$5$$
\medskip
\noindent
In light of this, the following result might be unexpected.
\medskip
\verb$abs(a+b*i)$
$$\mathop{\rm abs}(a+ib)$$
\medskip
\noindent
The result is not $\sqrt{a^2+b^2}$ because that would assume that
$a$ and $b$ are real.
For example, suppose that $a=0$ and $b=i$.
Then
$$|a+ib|=|-1|=1$$
and
$$\sqrt{a^2+b^2}=\sqrt{-1}=i$$
Hence
$$|a+ib|\ne\sqrt{a^2+b^2}\quad\hbox{for some $a,b\in\cal C$}$$
\medskip
\noindent
The {\it mag} function is an alternative.
It treats symbols like $a$ and $b$ as real.
\medskip
\verb$mag(a+b*i)$
$$(a^2+b^2)^{1/2}$$