2004-03-03 21:24:06 +01:00
|
|
|
#include "stdafx.h"
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Compute eigenvalues and eigenvectors
|
|
|
|
//
|
|
|
|
// Input: stack[tos - 1] symmetric matrix
|
|
|
|
//
|
|
|
|
// Output: D diagnonal matrix
|
|
|
|
//
|
|
|
|
// Q eigenvector matrix
|
|
|
|
//
|
|
|
|
// D and Q have the property that
|
|
|
|
//
|
|
|
|
// A == dot(transpose(Q),D,Q)
|
|
|
|
//
|
|
|
|
// where A is the original matrix.
|
|
|
|
//
|
|
|
|
// The eigenvalues are on the diagonal of D.
|
|
|
|
//
|
|
|
|
// The eigenvectors are row vectors in Q.
|
|
|
|
//
|
|
|
|
// The eigenvalue relation
|
|
|
|
//
|
|
|
|
// A X = lambda X
|
|
|
|
//
|
|
|
|
// can be checked as follows:
|
|
|
|
//
|
|
|
|
// lambda = D[1,1]
|
|
|
|
//
|
|
|
|
// X = Q[1]
|
|
|
|
//
|
|
|
|
// dot(A,X) - lambda X
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
|
|
|
#define D(i, j) dd[n * (i) + (j)]
|
|
|
|
#define Q(i, j) qq[n * (i) + (j)]
|
|
|
|
|
|
|
|
extern void copy_tensor(void);
|
|
|
|
static void eigen(int);
|
|
|
|
static int check_arg(void);
|
|
|
|
static int step(void);
|
|
|
|
static void step2(int, int);
|
|
|
|
static int n;
|
|
|
|
static double *dd, *qq;
|
|
|
|
|
|
|
|
void
|
|
|
|
eval_eigen(void)
|
|
|
|
{
|
|
|
|
if (check_arg() == 0)
|
|
|
|
stop("eigen: argument is not a square matrix");
|
|
|
|
|
|
|
|
eigen(EIGEN);
|
|
|
|
|
2004-05-02 00:19:28 +02:00
|
|
|
p1 = get_symbol("D");
|
2004-03-03 21:24:06 +01:00
|
|
|
|
|
|
|
p1->u.sym.binding = p2;
|
|
|
|
p1->u.sym.binding2 = nil;
|
|
|
|
|
2004-05-02 00:19:28 +02:00
|
|
|
p1 = get_symbol("Q");
|
2004-03-03 21:24:06 +01:00
|
|
|
|
|
|
|
p1->u.sym.binding = p3;
|
|
|
|
p1->u.sym.binding2 = nil;
|
|
|
|
|
|
|
|
push(nil);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
eval_eigenval(void)
|
|
|
|
{
|
|
|
|
if (check_arg() == 0) {
|
|
|
|
push_symbol(EIGENVAL);
|
|
|
|
push(p1);
|
|
|
|
list(2);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
eigen(EIGENVAL);
|
|
|
|
|
|
|
|
push(p2);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
eval_eigenvec(void)
|
|
|
|
{
|
|
|
|
if (check_arg() == 0) {
|
|
|
|
push_symbol(EIGENVEC);
|
|
|
|
push(p1);
|
|
|
|
list(2);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
eigen(EIGENVEC);
|
|
|
|
|
|
|
|
push(p3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
check_arg(void)
|
|
|
|
{
|
|
|
|
int i, j, x;
|
|
|
|
|
|
|
|
push(cadr(p1));
|
|
|
|
eval();
|
|
|
|
p1 = pop();
|
|
|
|
|
|
|
|
// convert to floating point
|
|
|
|
|
|
|
|
x = floating;
|
|
|
|
floating = 1;
|
|
|
|
push(p1);
|
|
|
|
eval();
|
|
|
|
p1 = pop();
|
|
|
|
floating = x;
|
|
|
|
|
|
|
|
if (p1->k != TENSOR)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (p1->u.tensor->ndim != 2 || p1->u.tensor->dim[0] != p1->u.tensor->dim[1])
|
|
|
|
stop("eigen: argument is not a square matrix");
|
|
|
|
|
|
|
|
n = p1->u.tensor->dim[0];
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
for (j = 0; j < n; j++)
|
|
|
|
if (p1->u.tensor->elem[n * i + j]->k != DOUBLE)
|
|
|
|
stop("eigen: matrix is not numerical");
|
|
|
|
|
|
|
|
for (i = 0; i < n - 1; i++)
|
|
|
|
for (j = i + 1; j < n; j++)
|
|
|
|
if (fabs(p1->u.tensor->elem[n * i + j]->u.d - p1->u.tensor->elem[n * j + i]->u.d) > 1e-10)
|
|
|
|
stop("eigen: matrix is not symmetrical");
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Input: p1 matrix
|
|
|
|
//
|
|
|
|
// Output: p2 eigenvalues
|
|
|
|
//
|
|
|
|
// p3 eigenvectors
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
static void
|
|
|
|
eigen(int op)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
// malloc working vars
|
|
|
|
|
|
|
|
dd = (double *) malloc(n * n * sizeof (double));
|
|
|
|
|
|
|
|
if (dd == NULL)
|
|
|
|
stop("malloc failure");
|
|
|
|
|
|
|
|
qq = (double *) malloc(n * n * sizeof (double));
|
|
|
|
|
|
|
|
if (qq == NULL)
|
|
|
|
stop("malloc failure");
|
|
|
|
|
|
|
|
// initialize D
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
D(i, i) = p1->u.tensor->elem[n * i + i]->u.d;
|
|
|
|
for (j = i + 1; j < n; j++) {
|
|
|
|
D(i, j) = p1->u.tensor->elem[n * i + j]->u.d;
|
|
|
|
D(j, i) = p1->u.tensor->elem[n * i + j]->u.d;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// initialize Q
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
Q(i, i) = 1.0;
|
|
|
|
for (j = i + 1; j < n; j++) {
|
|
|
|
Q(i, j) = 0.0;
|
|
|
|
Q(j, i) = 0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// step up to 100 times
|
|
|
|
|
|
|
|
for (i = 0; i < 100; i++)
|
|
|
|
if (step() == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (i == 100)
|
|
|
|
printstr("\nnote: eigen did not converge\n");
|
|
|
|
|
|
|
|
// p2 = D
|
|
|
|
|
|
|
|
if (op == EIGEN || op == EIGENVAL) {
|
|
|
|
|
|
|
|
push(p1);
|
|
|
|
copy_tensor();
|
|
|
|
p2 = pop();
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
for (j = 0; j < n; j++) {
|
|
|
|
push_double(D(i, j));
|
|
|
|
p2->u.tensor->elem[n * i + j] = pop();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// p3 = Q
|
|
|
|
|
|
|
|
if (op == EIGEN || op == EIGENVEC) {
|
|
|
|
|
|
|
|
push(p1);
|
|
|
|
copy_tensor();
|
|
|
|
p3 = pop();
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
for (j = 0; j < n; j++) {
|
|
|
|
push_double(Q(i, j));
|
|
|
|
p3->u.tensor->elem[n * i + j] = pop();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// free working vars
|
|
|
|
|
|
|
|
free(dd);
|
|
|
|
free(qq);
|
|
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Example: p = 1, q = 3
|
|
|
|
//
|
|
|
|
// c 0 s 0
|
|
|
|
//
|
|
|
|
// 0 1 0 0
|
|
|
|
// G =
|
|
|
|
// -s 0 c 0
|
|
|
|
//
|
|
|
|
// 0 0 0 1
|
|
|
|
//
|
|
|
|
// The effect of multiplying G times A is...
|
|
|
|
//
|
|
|
|
// row 1 of A = c (row 1 of A ) + s (row 3 of A )
|
|
|
|
// n+1 n n
|
|
|
|
//
|
|
|
|
// row 3 of A = c (row 3 of A ) - s (row 1 of A )
|
|
|
|
// n+1 n n
|
|
|
|
//
|
|
|
|
// In terms of components the overall effect is...
|
|
|
|
//
|
|
|
|
// row 1 = c row 1 + s row 3
|
|
|
|
//
|
|
|
|
// A[1,1] = c A[1,1] + s A[3,1]
|
|
|
|
//
|
|
|
|
// A[1,2] = c A[1,2] + s A[3,2]
|
|
|
|
//
|
|
|
|
// A[1,3] = c A[1,3] + s A[3,3]
|
|
|
|
//
|
|
|
|
// A[1,4] = c A[1,4] + s A[3,4]
|
|
|
|
//
|
|
|
|
// row 3 = c row 3 - s row 1
|
|
|
|
//
|
|
|
|
// A[3,1] = c A[3,1] - s A[1,1]
|
|
|
|
//
|
|
|
|
// A[3,2] = c A[3,2] - s A[1,2]
|
|
|
|
//
|
|
|
|
// A[3,3] = c A[3,3] - s A[1,3]
|
|
|
|
//
|
|
|
|
// A[3,4] = c A[3,4] - s A[1,4]
|
|
|
|
//
|
|
|
|
// T
|
|
|
|
// The effect of multiplying A times G is...
|
|
|
|
//
|
|
|
|
// col 1 of A = c (col 1 of A ) + s (col 3 of A )
|
|
|
|
// n+1 n n
|
|
|
|
//
|
|
|
|
// col 3 of A = c (col 3 of A ) - s (col 1 of A )
|
|
|
|
// n+1 n n
|
|
|
|
//
|
|
|
|
// In terms of components the overall effect is...
|
|
|
|
//
|
|
|
|
// col 1 = c col 1 + s col 3
|
|
|
|
//
|
|
|
|
// A[1,1] = c A[1,1] + s A[1,3]
|
|
|
|
//
|
|
|
|
// A[2,1] = c A[2,1] + s A[2,3]
|
|
|
|
//
|
|
|
|
// A[3,1] = c A[3,1] + s A[3,3]
|
|
|
|
//
|
|
|
|
// A[4,1] = c A[4,1] + s A[4,3]
|
|
|
|
//
|
|
|
|
// col 3 = c col 3 - s col 1
|
|
|
|
//
|
|
|
|
// A[1,3] = c A[1,3] - s A[1,1]
|
|
|
|
//
|
|
|
|
// A[2,3] = c A[2,3] - s A[2,1]
|
|
|
|
//
|
|
|
|
// A[3,3] = c A[3,3] - s A[3,1]
|
|
|
|
//
|
|
|
|
// A[4,3] = c A[4,3] - s A[4,1]
|
|
|
|
//
|
|
|
|
// What we want to do is just compute the upper triangle of A since we
|
|
|
|
// know the lower triangle is identical.
|
|
|
|
//
|
|
|
|
// In other words, we just want to update components A[i,j] where i < j.
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Example: p = 2, q = 5
|
|
|
|
//
|
|
|
|
// p q
|
|
|
|
//
|
|
|
|
// j=1 j=2 j=3 j=4 j=5 j=6
|
|
|
|
//
|
|
|
|
// i=1 . A[1,2] . . A[1,5] .
|
|
|
|
//
|
|
|
|
// p i=2 A[2,1] A[2,2] A[2,3] A[2,4] A[2,5] A[2,6]
|
|
|
|
//
|
|
|
|
// i=3 . A[3,2] . . A[3,5] .
|
|
|
|
//
|
|
|
|
// i=4 . A[4,2] . . A[4,5] .
|
|
|
|
//
|
|
|
|
// q i=5 A[5,1] A[5,2] A[5,3] A[5,4] A[5,5] A[5,6]
|
|
|
|
//
|
|
|
|
// i=6 . A[6,2] . . A[6,5] .
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// This is what B = GA does:
|
|
|
|
//
|
|
|
|
// row 2 = c row 2 + s row 5
|
|
|
|
//
|
|
|
|
// B[2,1] = c * A[2,1] + s * A[5,1]
|
|
|
|
// B[2,2] = c * A[2,2] + s * A[5,2]
|
|
|
|
// B[2,3] = c * A[2,3] + s * A[5,3]
|
|
|
|
// B[2,4] = c * A[2,4] + s * A[5,4]
|
|
|
|
// B[2,5] = c * A[2,5] + s * A[5,5]
|
|
|
|
// B[2,6] = c * A[2,6] + s * A[5,6]
|
|
|
|
//
|
|
|
|
// row 5 = c row 5 - s row 2
|
|
|
|
//
|
|
|
|
// B[5,1] = c * A[5,1] + s * A[2,1]
|
|
|
|
// B[5,2] = c * A[5,2] + s * A[2,2]
|
|
|
|
// B[5,3] = c * A[5,3] + s * A[2,3]
|
|
|
|
// B[5,4] = c * A[5,4] + s * A[2,4]
|
|
|
|
// B[5,5] = c * A[5,5] + s * A[2,5]
|
|
|
|
// B[5,6] = c * A[5,6] + s * A[2,6]
|
|
|
|
//
|
|
|
|
// T
|
|
|
|
// This is what BG does:
|
|
|
|
//
|
|
|
|
// col 2 = c col 2 + s col 5
|
|
|
|
//
|
|
|
|
// B[1,2] = c * A[1,2] + s * A[1,5]
|
|
|
|
// B[2,2] = c * A[2,2] + s * A[2,5]
|
|
|
|
// B[3,2] = c * A[3,2] + s * A[3,5]
|
|
|
|
// B[4,2] = c * A[4,2] + s * A[4,5]
|
|
|
|
// B[5,2] = c * A[5,2] + s * A[5,5]
|
|
|
|
// B[6,2] = c * A[6,2] + s * A[6,5]
|
|
|
|
//
|
|
|
|
// col 5 = c col 5 - s col 2
|
|
|
|
//
|
|
|
|
// B[1,5] = c * A[1,5] - s * A[1,2]
|
|
|
|
// B[2,5] = c * A[2,5] - s * A[2,2]
|
|
|
|
// B[3,5] = c * A[3,5] - s * A[3,2]
|
|
|
|
// B[4,5] = c * A[4,5] - s * A[4,2]
|
|
|
|
// B[5,5] = c * A[5,5] - s * A[5,2]
|
|
|
|
// B[6,5] = c * A[6,5] - s * A[6,2]
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Step 1: Just do upper triangle (i < j), B[2,5] = 0
|
|
|
|
//
|
|
|
|
// B[1,2] = c * A[1,2] + s * A[1,5]
|
|
|
|
//
|
|
|
|
// B[2,3] = c * A[2,3] + s * A[5,3]
|
|
|
|
// B[2,4] = c * A[2,4] + s * A[5,4]
|
|
|
|
// B[2,6] = c * A[2,6] + s * A[5,6]
|
|
|
|
//
|
|
|
|
// B[1,5] = c * A[1,5] - s * A[1,2]
|
|
|
|
// B[3,5] = c * A[3,5] - s * A[3,2]
|
|
|
|
// B[4,5] = c * A[4,5] - s * A[4,2]
|
|
|
|
//
|
|
|
|
// B[5,6] = c * A[5,6] + s * A[2,6]
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Step 2: Transpose where i > j since A[i,j] == A[j,i]
|
|
|
|
//
|
|
|
|
// B[1,2] = c * A[1,2] + s * A[1,5]
|
|
|
|
//
|
|
|
|
// B[2,3] = c * A[2,3] + s * A[3,5]
|
|
|
|
// B[2,4] = c * A[2,4] + s * A[4,5]
|
|
|
|
// B[2,6] = c * A[2,6] + s * A[5,6]
|
|
|
|
//
|
|
|
|
// B[1,5] = c * A[1,5] - s * A[1,2]
|
|
|
|
// B[3,5] = c * A[3,5] - s * A[2,3]
|
|
|
|
// B[4,5] = c * A[4,5] - s * A[2,4]
|
|
|
|
//
|
|
|
|
// B[5,6] = c * A[5,6] + s * A[2,6]
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Step 3: Same as above except reorder
|
|
|
|
//
|
|
|
|
// k < p (k = 1)
|
|
|
|
//
|
|
|
|
// A[1,2] = c * A[1,2] + s * A[1,5]
|
|
|
|
// A[1,5] = c * A[1,5] - s * A[1,2]
|
|
|
|
//
|
|
|
|
// p < k < q (k = 3..4)
|
|
|
|
//
|
|
|
|
// A[2,3] = c * A[2,3] + s * A[3,5]
|
|
|
|
// A[3,5] = c * A[3,5] - s * A[2,3]
|
|
|
|
//
|
|
|
|
// A[2,4] = c * A[2,4] + s * A[4,5]
|
|
|
|
// A[4,5] = c * A[4,5] - s * A[2,4]
|
|
|
|
//
|
|
|
|
// q < k (k = 6)
|
|
|
|
//
|
|
|
|
// A[2,6] = c * A[2,6] + s * A[5,6]
|
|
|
|
// A[5,6] = c * A[5,6] - s * A[2,6]
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
static int
|
|
|
|
step(void)
|
|
|
|
{
|
|
|
|
int count, i, j;
|
|
|
|
|
|
|
|
count = 0;
|
|
|
|
|
|
|
|
// for each upper triangle "off-diagonal" component do step2
|
|
|
|
|
|
|
|
for (i = 0; i < n - 1; i++) {
|
|
|
|
for (j = i + 1; j < n; j++) {
|
|
|
|
if (D(i, j) != 0.0) {
|
|
|
|
step2(i, j);
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
step2(int p, int q)
|
|
|
|
{
|
|
|
|
int k;
|
|
|
|
double t, theta;
|
|
|
|
double c, cc, s, ss;
|
|
|
|
|
|
|
|
// compute c and s
|
|
|
|
|
|
|
|
// from Numerical Recipes (except they have a_qq - a_pp)
|
|
|
|
|
|
|
|
theta = 0.5 * (D(p, p) - D(q, q)) / D(p, q);
|
|
|
|
|
|
|
|
t = 1.0 / (fabs(theta) + sqrt(theta * theta + 1.0));
|
|
|
|
|
|
|
|
if (theta < 0.0)
|
|
|
|
t = -t;
|
|
|
|
|
|
|
|
c = 1.0 / sqrt(t * t + 1.0);
|
|
|
|
|
|
|
|
s = t * c;
|
|
|
|
|
|
|
|
// D = GD
|
|
|
|
|
|
|
|
// which means "add rows"
|
|
|
|
|
|
|
|
for (k = 0; k < n; k++) {
|
|
|
|
cc = D(p, k);
|
|
|
|
ss = D(q, k);
|
|
|
|
D(p, k) = c * cc + s * ss;
|
|
|
|
D(q, k) = c * ss - s * cc;
|
|
|
|
}
|
|
|
|
|
|
|
|
// D = D transpose(G)
|
|
|
|
|
|
|
|
// which means "add columns"
|
|
|
|
|
|
|
|
for (k = 0; k < n; k++) {
|
|
|
|
cc = D(k, p);
|
|
|
|
ss = D(k, q);
|
|
|
|
D(k, p) = c * cc + s * ss;
|
|
|
|
D(k, q) = c * ss - s * cc;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Q = GQ
|
|
|
|
|
|
|
|
// which means "add rows"
|
|
|
|
|
|
|
|
for (k = 0; k < n; k++) {
|
|
|
|
cc = Q(p, k);
|
|
|
|
ss = Q(q, k);
|
|
|
|
Q(p, k) = c * cc + s * ss;
|
|
|
|
Q(q, k) = c * ss - s * cc;
|
|
|
|
}
|
|
|
|
|
|
|
|
D(p, q) = 0.0;
|
|
|
|
D(q, p) = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *s[] = {
|
|
|
|
|
|
|
|
"eigen(A)",
|
|
|
|
"eigen: argument is not a square matrix",
|
|
|
|
|
|
|
|
"eigenval(A)",
|
|
|
|
"eigenval(A)",
|
|
|
|
|
|
|
|
"eigenvec(A)",
|
|
|
|
"eigenvec(A)",
|
|
|
|
|
|
|
|
"eigen((1,2))",
|
|
|
|
"eigen: argument is not a square matrix",
|
|
|
|
|
|
|
|
"eigen(((1,2),(1,2)))",
|
|
|
|
"eigen: matrix is not symmetrical",
|
|
|
|
|
|
|
|
"eigenval(((1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20)))",
|
|
|
|
"((0.038016,0,0,0),(0,0.453835,0,0),(0,0,2.20345,0),(0,0,0,26.3047))",
|
|
|
|
|
|
|
|
"eigenvec(((1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20)))",
|
|
|
|
"((0.308686,-0.72309,0.594551,-0.168412),(0.787275,-0.163234,-0.532107,0.265358),(0.530366,0.640332,0.391832,-0.393897),(0.0601867,0.201173,0.458082,0.863752))",
|
|
|
|
|
|
|
|
"eigen(hilbert(50))",
|
|
|
|
"",
|
|
|
|
|
|
|
|
"1+trace(hilbert(50))-trace(dot(transpose(Q),D,Q))",
|
|
|
|
"1",
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
|
|
|
"eigenval(hilbert(3))",
|
|
|
|
"((1.40832,0,0),(0,0.122327,0),(0,0,0.00268734))",
|
|
|
|
|
|
|
|
"eigenvec(hilbert(3))",
|
|
|
|
"((0.547448,-0.52829,-0.649007),(-0.127659,0.713747,-0.688672),(0.827045,0.459864,0.323298))",
|
|
|
|
|
|
|
|
"eigenval(hilbert(6))",
|
|
|
|
"((1.6189,0,0,0,0,0),(0,0.242361,0,0,0,0),(0,0,0.000615748,0,0,0),(0,0,0,1.25708e-05,0,0),(0,0,0,0,0.0163215,0),(0,0,0,0,0,1.0828e-07))",
|
|
|
|
|
|
|
|
"eigenvec(hilbert(6))",
|
|
|
|
"((-0.748719,-0.440718,-0.320697,-0.254311,-0.211531,-0.181443),(0.614545,-0.211082,-0.365894,-0.394707,-0.38819,-0.370696),(-0.0622266,0.490839,-0.535477,-0.417038,0.047034,0.540682),(0.0111443,-0.179733,0.604212,-0.443575,-0.441537,0.459115),(-0.240325,0.697651,0.231389,-0.132863,-0.362715,-0.502763),(0.00124819,-0.0356066,0.240679,-0.62546,0.689807,-0.271605))",
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
"D=quote(D)",
|
|
|
|
"",
|
|
|
|
|
|
|
|
"Q=quote(Q)",
|
|
|
|
"",
|
|
|
|
|
|
|
|
"A=hilbert(3)",
|
|
|
|
"",
|
|
|
|
|
|
|
|
"eigen(A)",
|
|
|
|
"",
|
|
|
|
|
|
|
|
"D-eigenval(A)",
|
|
|
|
"0",
|
|
|
|
|
|
|
|
"Q-eigenvec(A)",
|
|
|
|
"0",
|
|
|
|
|
|
|
|
"A=quote(A)",
|
|
|
|
"",
|
|
|
|
|
|
|
|
"D=quote(D)",
|
|
|
|
"",
|
|
|
|
|
|
|
|
"Q=quote(Q)",
|
|
|
|
"",
|
|
|
|
};
|
|
|
|
|
|
|
|
void
|
|
|
|
test_eigen(void)
|
|
|
|
{
|
|
|
|
test(__FILE__, s, sizeof s / sizeof (char *));
|
|
|
|
}
|