eigenmath/factor.cpp

232 lines
2.7 KiB
C++
Raw Permalink Normal View History

2007-11-18 02:08:12 +01:00
// factor a polynomial or integer
2004-03-03 21:24:06 +01:00
#include "stdafx.h"
#include "defs.h"
void
eval_factor(void)
{
2006-11-22 03:42:38 +01:00
push(cadr(p1));
2004-03-03 21:24:06 +01:00
eval();
2007-11-18 02:08:12 +01:00
2006-11-22 03:42:38 +01:00
push(caddr(p1));
eval();
2007-11-18 02:08:12 +01:00
p2 = pop();
if (p2 == symbol(NIL))
2006-11-22 03:42:38 +01:00
guess();
else
2007-11-18 02:08:12 +01:00
push(p2);
2006-11-22 03:42:38 +01:00
factor();
2007-11-18 02:08:12 +01:00
// more factoring?
p1 = cdddr(p1);
while (iscons(p1)) {
push(car(p1));
eval();
factor_again();
p1 = cdr(p1);
}
}
void
factor_again(void)
{
int h, n;
save();
p2 = pop();
p1 = pop();
h = tos;
if (car(p1) == symbol(MULTIPLY)) {
p1 = cdr(p1);
while (iscons(p1)) {
push(car(p1));
push(p2);
factor_term();
p1 = cdr(p1);
}
} else {
push(p1);
push(p2);
factor_term();
}
n = tos - h;
if (n > 1)
multiply_all_noexpand(n);
restore();
}
void
factor_term(void)
{
save();
factorpoly();
p1 = pop();
if (car(p1) == symbol(MULTIPLY)) {
p1 = cdr(p1);
while (iscons(p1)) {
push(car(p1));
p1 = cdr(p1);
}
} else
push(p1);
restore();
2006-09-20 18:46:38 +02:00
}
void
factor(void)
{
save();
p2 = pop();
p1 = pop();
if (isinteger(p1)) {
push(p1);
2004-03-03 21:24:06 +01:00
factor_number(); // see pollard.cpp
2006-09-20 18:46:38 +02:00
} else {
push(p1);
push(p2);
2004-03-03 21:24:06 +01:00
factorpoly();
}
2006-09-20 18:46:38 +02:00
restore();
2004-03-03 21:24:06 +01:00
}
// for factoring small integers (2^32 or less)
void
factor_small_number(void)
{
int d, expo, i, n;
save();
n = pop_integer();
if (n == (int) 0x80000000)
stop("number too big to factor");
if (n < 0)
n = -n;
for (i = 0; i < MAXPRIMETAB; i++) {
d = primetab[i];
if (d > n / d)
break;
expo = 0;
while (n % d == 0) {
n /= d;
expo++;
}
if (expo) {
push_integer(d);
push_integer(expo);
}
}
if (n > 1) {
push_integer(n);
push_integer(1);
}
restore();
}
2007-05-08 16:57:30 +02:00
#if SELFTEST
2004-03-03 21:24:06 +01:00
static char *s[] = {
"factor(0)",
"0",
"factor(1)",
"1",
"factor(2)",
"2",
"factor(3)",
"3",
"factor(4)",
"2^2",
"factor(5)",
"5",
"factor(6)",
"2*3",
"factor(7)",
"7",
"factor(8)",
"2^3",
"factor(9)",
"3^2",
"factor(10)",
"2*5",
"factor(100!)",
"2^97*3^48*5^24*7^16*11^9*13^7*17^5*19^5*23^4*29^3*31^3*37^2*41^2*43^2*47^2*53*59*61*67*71*73*79*83*89*97",
"factor(2*(2^30-35))",
"2*1073741789",
// x is the 10,000th prime
// Prime factors greater than x^2 are found using the Pollard rho method
2007-11-18 02:08:12 +01:00
"a=104729",
2004-03-03 21:24:06 +01:00
"",
2007-11-18 02:08:12 +01:00
"factor(2*(a^2+6))",
2004-03-03 21:24:06 +01:00
"2*10968163447",
2007-11-18 02:08:12 +01:00
"factor((a^2+6)^2)",
2004-03-03 21:24:06 +01:00
"10968163447*10968163447", // FIXME should be 10968163447^2
2007-11-18 02:08:12 +01:00
"factor((a^2+6)*(a^2+60))",
2004-03-03 21:24:06 +01:00
"10968163501*10968163447", // FIXME sort order
2007-11-18 02:08:12 +01:00
"f=(x+1)(x+2)(y+3)(y+4)",
2004-03-03 21:24:06 +01:00
"",
2007-11-18 02:08:12 +01:00
"factor(f,x,y)",
"(x+1)*(x+2)*(y+3)*(y+4)",
"factor(f,y,x)",
"(x+1)*(x+2)*(y+3)*(y+4)",
"f=(x+1)(x+1)(y+2)(y+2)",
"",
"factor(f,x,y)",
"(x+1)^2*(y+2)^2",
"factor(f,y,x)",
"(x+1)^2*(y+2)^2",
2004-03-03 21:24:06 +01:00
};
void
test_factor_number(void)
{
test(__FILE__, s, sizeof s / sizeof (char *));
}
2007-05-08 16:57:30 +02:00
#endif