*** empty log message ***

This commit is contained in:
George Weigt 2007-05-12 09:46:49 -07:00
parent 1717dea264
commit 0473a340da
2 changed files with 75 additions and 112 deletions

118
help.html
View file

@ -136,11 +136,6 @@ The inverse of m is equal to adj(m) divided by det(m).
<p><h1><tt><a name="and">and(<i>a,b,...</i>)</a></tt></h1>
Logical-and of predicate expressions.
<pre>
<i>Example</i>
and(A=B,B=C)
</pre>
<p>
<h1><tt><a name="arccos">arccos(<i>x</i>)</a></tt></h1>
@ -177,20 +172,14 @@ Returns the smallest integer not less than x.
<p>
<h1><tt><a name="check">check(<i>x</i>)</a></tt></h1>
If x is true then continue, else stop.
<pre>
<i>Example</i>
check(A=B)
</pre>
<p>
<h1><tt><a name="choose">choose(<i>n,k</i>)</a></tt></h1>
Returns the number of combinations of n items taken k at a time,
choose(n,k)=n!/(k!*(n-k)!)
Returns the number of combinations of n items taken k at a time.
<p>
<h1><tt><a name="circexp">circexp(<i>x</i>)</a></tt></h1>
Returns expression x with circular functions converted to exponential forms.
Returns expression x with circular and hyperbolic functions converted to exponential forms.
Sometimes this will simplify an expression.
<p>
@ -205,32 +194,12 @@ Returns the cofactor of m for row i and column j.
<p>
<h1><tt><a name="conj">conj(<i>z</i>)</a></tt></h1>
Returns the complex conjugate of z.
<pre>
<i>Example</i>
conj(3+4*i)
</pre>
<p>
<h1><tt><a name="contract">contract(<i>a,i,j</i>)</a></tt></h1>
Returns "a" summed over indices i and j.
If i and j are omitted then 1 and 2 are used.
<!--
The following example shows how contract adds diagonal elements.
<pre>
<i>Enter</i>
A = ((a,b),(c,d))
contract(A,1,2)
<i>Result</i>
a + d
</pre>
-->
<p>
<h1><tt><a name="cos">cos(<i>x</i>)</a></tt></h1>
Returns the cosine of x.
@ -368,16 +337,7 @@ The polynomial should be factorable over integers.
<p>
<h1><tt><a name="factorial">factorial(<i>x</i>)</a></tt></h1>
For example,
<pre>
<i>Enter</i>
100!
<i>Result</i>
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
</pre>
Can be entered as x!
<p>
<h1><tt><a name="filter">filter(<i>f,a,b,...</i>)</a></tt></h1>
@ -385,17 +345,8 @@ Returns f excluding any terms containing a, b, etc.
<p>
<h1><tt><a name="float">float(<i>x</i>)</a></tt></h1>
Converts rational numbers and integers to floating
point values. The symbol pi is also converted.
<pre>
<i>Enter</i>
float(100!)
<i>Result</i>
9.33262e+157
</pre>
Converts rational numbers and integers to floating point values.
The symbol pi is also converted.
<p>
<h1><tt><a name="floor">floor(<i>x</i>)</a></tt></h1>
@ -404,18 +355,6 @@ Returns the largest integer not greater than x.
<p>
<h1><tt><a name="for">for(<i>i,j,k,a,b,...</i>)</a></tt></h1>
For i equals j through k evaluate a, b, etc.
<pre>
<i>Enter</i>
x=0
y=2
for(k,1,9,x=sqrt(2+x),y=2*y/x)
float(y)
<i>Result</i>
3.14159
</pre>
<p>
<h1><tt><a name="gcd">gcd(<i>a,b,...</i>)</a></tt></h1>
@ -467,17 +406,6 @@ If m is omitted then m=0 is used.
<p>
<h1><tt><a name="log">log(<i>x</i>)</a></tt></h1>
Returns the natural logarithm of x.
<!--
<pre>
<i>Enter</i>
log(-10.0)
<i>Result</i>
2.30259 + i &#960
</pre>
-->
<p>
<h1><tt><a name="mag">mag(<i>z</i>)</a></tt></h1>
@ -490,11 +418,6 @@ Returns the remainder of the result of "a" divided by b.
<p>
<h1><tt><a name="not">not(<i>x</i>)</a></tt></h1>
Returns the logical negation of x.
<pre>
<i>Example</i>
not(A=B)
</pre>
<p>
<h1><tt><a name="numerator">numerator(<i>x</i>)</a></tt></h1>
@ -503,11 +426,6 @@ Returns the numerator of expression x.
<p>
<h1><tt><a name="or">or(<i>a,b,...</i>)</a></tt></h1>
Logical-or of predicate expressions.
<pre>
<i>Example</i>
or(A=B,A=C)
</pre>
<p>
<h1><tt><a name="outer">outer(<i>a,b,...</i>)</a></tt></h1>
@ -517,22 +435,11 @@ Also known as the tensor product.
<p>
<h1><tt><a name="polar">polar(<i>z</i>)</a></tt></h1>
Returns complex z in polar form.
<!--
<pre>
<i>Enter</i>
polar(1 + exp(i pi/3))
<i>Result</i>
1/6 1/2
(-1) 3
</pre>
-->
<p>
<h1><tt><a name="prime">prime(<i>n</i>)</a></tt></h1>
Returns the nth prime number, 1&le;n&le;10000.
Returns the nth prime number.
The domain of n is 1 to 10000.
<p>
<h1><tt><a name="print">print(<i>x</i>)</a></tt></h1>
@ -616,17 +523,6 @@ Returns the hyperbolic tangent of <i>x</i>.
Returns the Taylor expansion of f(x) around x=a.
If "a" is omitted then a=0 is used.
The argument n is the degree of the expansion.
<pre>
<i>Enter</i>
taylor(1/cos(x),x,6)
<i>Result</i>
1 2 5 4 61 6
1 + --- x + ---- x + ----- x
2 24 720
</pre>
<p><h1><tt><a name="test">test(<i>a,b,c,d,...</i>)</a></tt></h1>
If "a" is true then b is returned

69
man.tex
View file

@ -1,7 +1,7 @@
\documentclass[12pt,openany]{report}
\title{Eigenmath Manual}
\author{George Weigt}
\date{May 5, 2007}
\date{May 12, 2007}
\pagestyle{headings}
\usepackage{graphicx}
@ -313,8 +313,44 @@ The default range is $(-\pi,\pi)$.
\noindent
\includegraphics[scale=0.5]{circle2.png}
\newpage
\noindent
Here are a couple of interesting curves and the code for drawing them.
First is a lemniscate.
\medskip
\verb$clear$
\verb$X=cos(t)/(1+sin(t)^2)$
\verb$Y=sin(t)*cos(t)/(1+sin(t)^2)$
\verb$draw(5*(X,Y))$
\medskip
\noindent
\includegraphics[scale=0.5]{lemniscate.png}
\medskip
\noindent
Next is a cardioid.
\medskip
\verb$r=(1+cos(t))/2$
\verb$u=(cos(t),sin(t))$
\verb$xrange=(-1,1)$
\verb$yrange=(-1,1)$
\verb$draw(r*u)$
\medskip
\noindent
\includegraphics[scale=0.5]{cardioid.png}
\newpage
\chapter{Linear Algebra}
@ -580,6 +616,37 @@ $${1\over8}\pi$$
\newpage
\noindent
The following example demonstrates a technique for computing
a line integral when the path is already parameterized.
The task at hand is to compute\footnote{
From a problem in {\it Advanced Calculus} by Wilfred Kaplan.}
$$\int_C z\,dx+x\,dy+y\,dz$$
where $C$ is the path
$$x=2t+1,\qquad y=t^2,\qquad z=1+t^3,\qquad 0\le t\le 1$$
The main idea is that we can rewrite the integrand with the following substitutions.
$$dx=\left({dx\over dt}\right)dt,\qquad
dy=\left({dy\over dt}\right)dt,\qquad
dz=\left({dz\over dt}\right)dt$$
Therefore in Eigenmath we have
\medskip
\verb$x=2t+1$
\verb$y=t^2$
\verb$z=1+t^3$
\verb$f=z*d(x,t)+x*d(y,t)+y*d(z,t)$
\verb$I=integral(f,t)$
\verb$eval(I,t,1)-eval(I,t,0)$
$$163\over30$$
\newpage
\chapter{Complex Numbers}
\noindent