*** empty log message ***
This commit is contained in:
parent
1717dea264
commit
0473a340da
2 changed files with 75 additions and 112 deletions
118
help.html
118
help.html
|
@ -136,11 +136,6 @@ The inverse of m is equal to adj(m) divided by det(m).
|
|||
|
||||
<p><h1><tt><a name="and">and(<i>a,b,...</i>)</a></tt></h1>
|
||||
Logical-and of predicate expressions.
|
||||
<pre>
|
||||
<i>Example</i>
|
||||
|
||||
and(A=B,B=C)
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="arccos">arccos(<i>x</i>)</a></tt></h1>
|
||||
|
@ -177,20 +172,14 @@ Returns the smallest integer not less than x.
|
|||
<p>
|
||||
<h1><tt><a name="check">check(<i>x</i>)</a></tt></h1>
|
||||
If x is true then continue, else stop.
|
||||
<pre>
|
||||
<i>Example</i>
|
||||
|
||||
check(A=B)
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="choose">choose(<i>n,k</i>)</a></tt></h1>
|
||||
Returns the number of combinations of n items taken k at a time,
|
||||
choose(n,k)=n!/(k!*(n-k)!)
|
||||
Returns the number of combinations of n items taken k at a time.
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="circexp">circexp(<i>x</i>)</a></tt></h1>
|
||||
Returns expression x with circular functions converted to exponential forms.
|
||||
Returns expression x with circular and hyperbolic functions converted to exponential forms.
|
||||
Sometimes this will simplify an expression.
|
||||
|
||||
<p>
|
||||
|
@ -205,32 +194,12 @@ Returns the cofactor of m for row i and column j.
|
|||
<p>
|
||||
<h1><tt><a name="conj">conj(<i>z</i>)</a></tt></h1>
|
||||
Returns the complex conjugate of z.
|
||||
<pre>
|
||||
<i>Example</i>
|
||||
|
||||
conj(3+4*i)
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="contract">contract(<i>a,i,j</i>)</a></tt></h1>
|
||||
Returns "a" summed over indices i and j.
|
||||
If i and j are omitted then 1 and 2 are used.
|
||||
|
||||
<!--
|
||||
The following example shows how contract adds diagonal elements.
|
||||
<pre>
|
||||
<i>Enter</i>
|
||||
|
||||
A = ((a,b),(c,d))
|
||||
|
||||
contract(A,1,2)
|
||||
|
||||
<i>Result</i>
|
||||
|
||||
a + d
|
||||
</pre>
|
||||
-->
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="cos">cos(<i>x</i>)</a></tt></h1>
|
||||
Returns the cosine of x.
|
||||
|
@ -368,16 +337,7 @@ The polynomial should be factorable over integers.
|
|||
|
||||
<p>
|
||||
<h1><tt><a name="factorial">factorial(<i>x</i>)</a></tt></h1>
|
||||
For example,
|
||||
<pre>
|
||||
<i>Enter</i>
|
||||
|
||||
100!
|
||||
|
||||
<i>Result</i>
|
||||
|
||||
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
|
||||
</pre>
|
||||
Can be entered as x!
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="filter">filter(<i>f,a,b,...</i>)</a></tt></h1>
|
||||
|
@ -385,17 +345,8 @@ Returns f excluding any terms containing a, b, etc.
|
|||
|
||||
<p>
|
||||
<h1><tt><a name="float">float(<i>x</i>)</a></tt></h1>
|
||||
Converts rational numbers and integers to floating
|
||||
point values. The symbol pi is also converted.
|
||||
<pre>
|
||||
<i>Enter</i>
|
||||
|
||||
float(100!)
|
||||
|
||||
<i>Result</i>
|
||||
|
||||
9.33262e+157
|
||||
</pre>
|
||||
Converts rational numbers and integers to floating point values.
|
||||
The symbol pi is also converted.
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="floor">floor(<i>x</i>)</a></tt></h1>
|
||||
|
@ -404,18 +355,6 @@ Returns the largest integer not greater than x.
|
|||
<p>
|
||||
<h1><tt><a name="for">for(<i>i,j,k,a,b,...</i>)</a></tt></h1>
|
||||
For i equals j through k evaluate a, b, etc.
|
||||
<pre>
|
||||
<i>Enter</i>
|
||||
|
||||
x=0
|
||||
y=2
|
||||
for(k,1,9,x=sqrt(2+x),y=2*y/x)
|
||||
float(y)
|
||||
|
||||
<i>Result</i>
|
||||
|
||||
3.14159
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="gcd">gcd(<i>a,b,...</i>)</a></tt></h1>
|
||||
|
@ -467,17 +406,6 @@ If m is omitted then m=0 is used.
|
|||
<p>
|
||||
<h1><tt><a name="log">log(<i>x</i>)</a></tt></h1>
|
||||
Returns the natural logarithm of x.
|
||||
<!--
|
||||
<pre>
|
||||
<i>Enter</i>
|
||||
|
||||
log(-10.0)
|
||||
|
||||
<i>Result</i>
|
||||
|
||||
2.30259 + i π
|
||||
</pre>
|
||||
-->
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="mag">mag(<i>z</i>)</a></tt></h1>
|
||||
|
@ -490,11 +418,6 @@ Returns the remainder of the result of "a" divided by b.
|
|||
<p>
|
||||
<h1><tt><a name="not">not(<i>x</i>)</a></tt></h1>
|
||||
Returns the logical negation of x.
|
||||
<pre>
|
||||
<i>Example</i>
|
||||
|
||||
not(A=B)
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="numerator">numerator(<i>x</i>)</a></tt></h1>
|
||||
|
@ -503,11 +426,6 @@ Returns the numerator of expression x.
|
|||
<p>
|
||||
<h1><tt><a name="or">or(<i>a,b,...</i>)</a></tt></h1>
|
||||
Logical-or of predicate expressions.
|
||||
<pre>
|
||||
<i>Example</i>
|
||||
|
||||
or(A=B,A=C)
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="outer">outer(<i>a,b,...</i>)</a></tt></h1>
|
||||
|
@ -517,22 +435,11 @@ Also known as the tensor product.
|
|||
<p>
|
||||
<h1><tt><a name="polar">polar(<i>z</i>)</a></tt></h1>
|
||||
Returns complex z in polar form.
|
||||
<!--
|
||||
<pre>
|
||||
<i>Enter</i>
|
||||
|
||||
polar(1 + exp(i pi/3))
|
||||
|
||||
<i>Result</i>
|
||||
|
||||
1/6 1/2
|
||||
(-1) 3
|
||||
</pre>
|
||||
-->
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="prime">prime(<i>n</i>)</a></tt></h1>
|
||||
Returns the nth prime number, 1≤n≤10000.
|
||||
Returns the nth prime number.
|
||||
The domain of n is 1 to 10000.
|
||||
|
||||
<p>
|
||||
<h1><tt><a name="print">print(<i>x</i>)</a></tt></h1>
|
||||
|
@ -616,17 +523,6 @@ Returns the hyperbolic tangent of <i>x</i>.
|
|||
Returns the Taylor expansion of f(x) around x=a.
|
||||
If "a" is omitted then a=0 is used.
|
||||
The argument n is the degree of the expansion.
|
||||
<pre>
|
||||
<i>Enter</i>
|
||||
|
||||
taylor(1/cos(x),x,6)
|
||||
|
||||
<i>Result</i>
|
||||
|
||||
1 2 5 4 61 6
|
||||
1 + --- x + ---- x + ----- x
|
||||
2 24 720
|
||||
</pre>
|
||||
|
||||
<p><h1><tt><a name="test">test(<i>a,b,c,d,...</i>)</a></tt></h1>
|
||||
If "a" is true then b is returned
|
||||
|
|
69
man.tex
69
man.tex
|
@ -1,7 +1,7 @@
|
|||
\documentclass[12pt,openany]{report}
|
||||
\title{Eigenmath Manual}
|
||||
\author{George Weigt}
|
||||
\date{May 5, 2007}
|
||||
\date{May 12, 2007}
|
||||
\pagestyle{headings}
|
||||
\usepackage{graphicx}
|
||||
|
||||
|
@ -313,8 +313,44 @@ The default range is $(-\pi,\pi)$.
|
|||
\noindent
|
||||
\includegraphics[scale=0.5]{circle2.png}
|
||||
|
||||
\newpage
|
||||
|
||||
\noindent
|
||||
Here are a couple of interesting curves and the code for drawing them.
|
||||
First is a lemniscate.
|
||||
|
||||
\medskip
|
||||
\verb$clear$
|
||||
|
||||
\verb$X=cos(t)/(1+sin(t)^2)$
|
||||
|
||||
\verb$Y=sin(t)*cos(t)/(1+sin(t)^2)$
|
||||
|
||||
\verb$draw(5*(X,Y))$
|
||||
|
||||
\medskip
|
||||
\noindent
|
||||
\includegraphics[scale=0.5]{lemniscate.png}
|
||||
|
||||
\medskip
|
||||
\noindent
|
||||
Next is a cardioid.
|
||||
|
||||
\medskip
|
||||
\verb$r=(1+cos(t))/2$
|
||||
|
||||
\verb$u=(cos(t),sin(t))$
|
||||
|
||||
\verb$xrange=(-1,1)$
|
||||
|
||||
\verb$yrange=(-1,1)$
|
||||
|
||||
\verb$draw(r*u)$
|
||||
|
||||
\medskip
|
||||
\noindent
|
||||
\includegraphics[scale=0.5]{cardioid.png}
|
||||
|
||||
\newpage
|
||||
|
||||
\chapter{Linear Algebra}
|
||||
|
@ -580,6 +616,37 @@ $${1\over8}\pi$$
|
|||
|
||||
\newpage
|
||||
|
||||
\noindent
|
||||
The following example demonstrates a technique for computing
|
||||
a line integral when the path is already parameterized.
|
||||
The task at hand is to compute\footnote{
|
||||
From a problem in {\it Advanced Calculus} by Wilfred Kaplan.}
|
||||
$$\int_C z\,dx+x\,dy+y\,dz$$
|
||||
where $C$ is the path
|
||||
$$x=2t+1,\qquad y=t^2,\qquad z=1+t^3,\qquad 0\le t\le 1$$
|
||||
The main idea is that we can rewrite the integrand with the following substitutions.
|
||||
$$dx=\left({dx\over dt}\right)dt,\qquad
|
||||
dy=\left({dy\over dt}\right)dt,\qquad
|
||||
dz=\left({dz\over dt}\right)dt$$
|
||||
Therefore in Eigenmath we have
|
||||
|
||||
\medskip
|
||||
\verb$x=2t+1$
|
||||
|
||||
\verb$y=t^2$
|
||||
|
||||
\verb$z=1+t^3$
|
||||
|
||||
\verb$f=z*d(x,t)+x*d(y,t)+y*d(z,t)$
|
||||
|
||||
\verb$I=integral(f,t)$
|
||||
|
||||
\verb$eval(I,t,1)-eval(I,t,0)$
|
||||
|
||||
$$163\over30$$
|
||||
|
||||
\newpage
|
||||
|
||||
\chapter{Complex Numbers}
|
||||
|
||||
\noindent
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue