*** empty log message ***
This commit is contained in:
parent
64f5827b4a
commit
0954123de2
1 changed files with 10 additions and 14 deletions
|
@ -86,42 +86,38 @@ $$L=1.47894$$
|
|||
|
||||
There are two kinds of line integrals, one for scalar fields and the other
|
||||
for vector fields.
|
||||
Both are closely related to arc length, as the following table shows.
|
||||
Both are closely related to arc length, as shown in the following table.
|
||||
|
||||
\bigskip
|
||||
|
||||
\begin{center}
|
||||
|
||||
\begin{tabular}{|llll|}
|
||||
\begin{tabular}{|lll|}
|
||||
\hline
|
||||
& & & \\
|
||||
& $\quad$
|
||||
& & \\
|
||||
& Abstract form
|
||||
& Computable form
|
||||
\\
|
||||
& & & \\
|
||||
& & \\
|
||||
Arc length
|
||||
&
|
||||
& $\displaystyle{\int_C ds}$
|
||||
& $\displaystyle{\int_a^b |g'(t)|\,dt}$
|
||||
\\
|
||||
& & & \\
|
||||
& & \\
|
||||
Line integral, scalar field
|
||||
&
|
||||
& $\displaystyle{\int_C f\,ds}$
|
||||
& $\displaystyle{\int_a^b f(g(t))\,|g'(t)|\,dt}$
|
||||
\\
|
||||
& & & \\
|
||||
& & \\
|
||||
Line integral, vector field
|
||||
&
|
||||
& $\displaystyle{\int_C(F\cdot u)\,ds}$
|
||||
& $\displaystyle{\int_a^b F(g(t))\cdot g'(t)\,dt}$
|
||||
\\
|
||||
& & & \\
|
||||
& & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\end{center}
|
||||
|
||||
\medskip
|
||||
\bigskip
|
||||
\noindent
|
||||
We have
|
||||
$$ds=|g'(t)|\,dt$$
|
||||
|
|
Loading…
Add table
Reference in a new issue