*** empty log message ***

This commit is contained in:
George Weigt 2008-12-15 19:56:10 -07:00
parent 64f5827b4a
commit 0954123de2

View file

@ -86,42 +86,38 @@ $$L=1.47894$$
There are two kinds of line integrals, one for scalar fields and the other
for vector fields.
Both are closely related to arc length, as the following table shows.
Both are closely related to arc length, as shown in the following table.
\bigskip
\begin{center}
\begin{tabular}{|llll|}
\begin{tabular}{|lll|}
\hline
& & & \\
& $\quad$
& & \\
& Abstract form
& Computable form
\\
& & & \\
& & \\
Arc length
&
& $\displaystyle{\int_C ds}$
& $\displaystyle{\int_a^b |g'(t)|\,dt}$
\\
& & & \\
& & \\
Line integral, scalar field
&
& $\displaystyle{\int_C f\,ds}$
& $\displaystyle{\int_a^b f(g(t))\,|g'(t)|\,dt}$
\\
& & & \\
& & \\
Line integral, vector field
&
& $\displaystyle{\int_C(F\cdot u)\,ds}$
& $\displaystyle{\int_a^b F(g(t))\cdot g'(t)\,dt}$
\\
& & & \\
& & \\
\hline
\end{tabular}
\end{center}
\medskip
\bigskip
\noindent
We have
$$ds=|g'(t)|\,dt$$