*** empty log message ***

This commit is contained in:
George Weigt 2007-07-29 09:27:18 -07:00
parent 6f1faa14df
commit 2956cd9f56

View file

@ -42,3 +42,30 @@ substitutions for
$x$ and $y$.
The $defint$ integrand is $f{*}r$ because $r\,dr\,d\theta=dx\,dy$.
\medskip
\noindent
Now let us try computing the line integral and see if we get the same result.
We need to use the trick of converting sine and cosine to exponentials.
%Returning to the previous example for a moment, let us compute the
%line integral and see if we get the same result.
%Again, the integral is too complex for Eigenmath to solve directly.
%In this case we use the trick of converting to exponentials.
\medskip
\verb$x=cos(t)$
\verb$y=sin(t)$
\verb$P=2x^3-y^3$
\verb$Q=x^3+y^3$
\verb$f=P*d(x,t)+Q*d(y,t)$
\verb$f=circexp(f)$
\verb$defint(f,t,0,2pi)$
$${3\over2}\pi$$