*** empty log message ***
This commit is contained in:
parent
6f1faa14df
commit
2956cd9f56
1 changed files with 27 additions and 0 deletions
|
@ -42,3 +42,30 @@ substitutions for
|
|||
$x$ and $y$.
|
||||
The $defint$ integrand is $f{*}r$ because $r\,dr\,d\theta=dx\,dy$.
|
||||
|
||||
\medskip
|
||||
\noindent
|
||||
Now let us try computing the line integral and see if we get the same result.
|
||||
We need to use the trick of converting sine and cosine to exponentials.
|
||||
|
||||
%Returning to the previous example for a moment, let us compute the
|
||||
%line integral and see if we get the same result.
|
||||
%Again, the integral is too complex for Eigenmath to solve directly.
|
||||
%In this case we use the trick of converting to exponentials.
|
||||
|
||||
\medskip
|
||||
\verb$x=cos(t)$
|
||||
|
||||
\verb$y=sin(t)$
|
||||
|
||||
\verb$P=2x^3-y^3$
|
||||
|
||||
\verb$Q=x^3+y^3$
|
||||
|
||||
\verb$f=P*d(x,t)+Q*d(y,t)$
|
||||
|
||||
\verb$f=circexp(f)$
|
||||
|
||||
\verb$defint(f,t,0,2pi)$
|
||||
|
||||
$${3\over2}\pi$$
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue