*** empty log message ***
This commit is contained in:
parent
0ec01a2ed1
commit
3e86c5571c
1 changed files with 50 additions and 0 deletions
50
131.tex
Normal file
50
131.tex
Normal file
|
@ -0,0 +1,50 @@
|
|||
3. Let random variable $X$ be the time to leakage failure in
|
||||
a certain type of dry-cell battery with probability
|
||||
density function
|
||||
$$f(x)=\cases{
|
||||
\displaystyle{
|
||||
{\beta\over\sigma^\beta}(x-\tau)^{\beta-1}e^{-\left({x-\tau\over\sigma}\right)^\beta}
|
||||
},
|
||||
&for $x\in(\tau,\infty)$\cr
|
||||
\cr
|
||||
0,&otherwise
|
||||
}$$
|
||||
|
||||
\bigskip
|
||||
{\bf (a) Find the mean and variance of $X$.}
|
||||
|
||||
$$\mu=\int_\tau^\infty x{\beta\over\sigma^\beta}(x-\tau)^{\beta-1}e^{-(x-\tau)^\beta/\sigma^\beta}\,dx$$
|
||||
Use integration by parts.
|
||||
$$
|
||||
u=x,\qquad du=dx,\qquad
|
||||
v=-e^{-(x-\tau)^\beta/\sigma^\beta},\qquad
|
||||
dv={\beta\over\sigma^\beta}(x-\tau)^{\beta-1}e^{-(x-\tau)^\beta/\sigma^\beta}\,dx
|
||||
$$
|
||||
$$
|
||||
\int u\,dv=uv-\int v\,du
|
||||
=-xe^{-(x-\tau)^\beta/\sigma^\beta}
|
||||
+\int e^{-(x-\tau)^\beta/\sigma^\beta}\,dx
|
||||
$$
|
||||
Can't figure out the rest. Is the mean $\tau$?
|
||||
|
||||
\bigskip
|
||||
{\bf (b) Find the distribution function of $X$.}
|
||||
|
||||
\bigskip
|
||||
$$\int_\tau^t{\beta\over\sigma^\beta}(x-\tau)^{\beta-1}e^{-(x-\tau)^\beta/\sigma^\beta}
|
||||
=-e^{-(x-\tau)^\beta/\sigma^\beta}\bigg|_\tau^t
|
||||
=1-e^{-(t-\tau)^\beta/\sigma^\beta}
|
||||
$$
|
||||
$$F(t)=\cases{
|
||||
0,&$t<\tau$\cr
|
||||
1-e^{-(t-\tau)^\beta/\sigma^\beta},&$\tau\le t$\cr
|
||||
}$$
|
||||
|
||||
\bigskip
|
||||
{\bf (c) What is the distribution of $X$ when $\tau=0$, $\beta=1$?}
|
||||
$$F(t)\bigg|_{\tau=0,\,\beta=1}=\cases{
|
||||
0,&$t<1$\cr
|
||||
1-e^{-t/\sigma},&$1\le t$\cr
|
||||
}$$
|
||||
|
||||
\end
|
Loading…
Add table
Reference in a new issue