*** empty log message ***
This commit is contained in:
parent
41d3536d66
commit
416992903c
2 changed files with 377 additions and 0 deletions
85
181.tex
Normal file
85
181.tex
Normal file
|
@ -0,0 +1,85 @@
|
|||
|
||||
indent
|
||||
{\it George Weigt -- Advanced Calculus Homework \#4}
|
||||
|
||||
$$\eqalign{
|
||||
I&=\int_0^{\pi/2}\ln(\cos x)\,dx\cr
|
||||
J&=\int_0^{\pi/2}\ln(\sin x)\,dx
|
||||
}$$
|
||||
|
||||
\beginsection 1.
|
||||
|
||||
First, rewrite the integral $I$ by using the substitution
|
||||
$x={\pi\over2}-y$. Show that
|
||||
$$I=J$$
|
||||
Solution: We have
|
||||
$$x={\pi\over2}-y,\qquad dx=-dy$$
|
||||
In addition, the limits of the integral must change from $x$ to $y$ according to
|
||||
$y(x)={\pi/2}-x$.
|
||||
$$\int_{y(0)}^{y(\pi/2)}=\int_{\pi/2}^0$$
|
||||
Therefore
|
||||
$$\eqalign{
|
||||
I&=\int_0^{\pi/2}\ln(\cos x)\,dx\cr
|
||||
&=-\int_{\pi/2}^0\ln(\cos({\pi\over2}-y))\,dy\cr
|
||||
&=\int_0^{\pi/2}\ln(\cos({\pi\over2}-y))\,dy
|
||||
}$$
|
||||
The last step removes the minus sign by flipping the limits of integration.
|
||||
Then from the hint, applying the substitution $\cos({\pi\over2}-y)=\sin y$ yields
|
||||
$$I=\int_0^{\pi/2}\ln(\cos({\pi\over2}-y))\,dy=
|
||||
\int_0^{\pi/2}\ln(\sin y)\,dy=J
|
||||
$$
|
||||
|
||||
\beginsection 2.
|
||||
|
||||
Next, add the two integrals together and show that
|
||||
$$I+J=-{\pi\over2}\ln2+{1\over2}\int_0^\pi\ln(\sin x)\,dx\eqno(4)$$
|
||||
Solution: We have
|
||||
$$\eqalign{
|
||||
I+J&=\int_0^{\pi/2}\ln(\cos x)\,dx+\int_0^{\pi/2}\ln(\sin x)\,dx\cr
|
||||
&=\int_0^{\pi/2}\big[\ln(\cos x)+\ln(\sin x)\big]\,dx\cr
|
||||
&=\int_0^{\pi/2}\ln(\cos x\sin x)\,dx\cr
|
||||
&=\int_0^{\pi/2}\ln(\hbox{$1\over2$}\sin 2x)\,dx\cr
|
||||
&=\int_0^{\pi/2}\big[\ln\hbox{$1\over2$}+\ln(\sin 2x)\big]\,dx\cr
|
||||
&=\int_0^{\pi/2}\ln\hbox{$1\over2$}\,dx+\int_0^{\pi/2}\ln(\sin2x)\,dx\cr
|
||||
}$$
|
||||
On the last line above, the left hand integral becomes
|
||||
$$\int_0^{\pi/2}\ln\hbox{$1\over2$}\,dx=(-\ln2)x\bigg|_0^{\pi/2}=-{\pi\over2}\ln2$$
|
||||
Using the substitution $y=2x$ and $dy=2dx$, the right hand integral becomes
|
||||
$$\int_0^{\pi/2}\ln(\sin2x)\,dx={1\over2}\int_0^\pi\ln(\sin y)\,dy$$
|
||||
Hence
|
||||
$$I+J=-{\pi\over2}\ln2+{1\over2}\int_0^\pi\ln(\sin x)\,dx$$
|
||||
|
||||
\beginsection 3.
|
||||
|
||||
Show that
|
||||
$$\int_0^\pi\ln(\sin x)\,dx=2J\eqno(5)$$
|
||||
Solution: Consider the following integral.
|
||||
$$\int_{\pi/2}^\pi\ln(\sin x)\,dx$$
|
||||
If we use the substitution
|
||||
$$y=x-{\pi/2},\qquad dy=dx,\qquad y(\pi/2)=0,\qquad y(\pi)=\pi/2$$
|
||||
we obtain
|
||||
$$\int_{\pi/2}^\pi\ln(\sin x)\,dx=\int_0^{\pi/2}\ln(\sin(y+\pi/2))\,dy
|
||||
=\int_0^{\pi/2}\ln(\cos y)\,dy=I$$
|
||||
Then by $I=J$ we have
|
||||
$$\int_{\pi/2}^\pi\ln(\sin x)\,dx=J$$
|
||||
Hence
|
||||
$$\int_0^\pi\ln(\sin x)\,dx
|
||||
=\int_0^{\pi/2}\ln(\sin x)\,dx+\int_{\pi/2}^\pi\ln(\sin x)\,dx
|
||||
=2J$$
|
||||
|
||||
\beginsection 4.
|
||||
|
||||
Finally, by combining your answers in (4) and (5), evaluate $I$ and $J$.
|
||||
\medskip\noindent
|
||||
Solution: From $I=J$ we have $I+J=2J$. Hence from (4) and (5) we have
|
||||
$$-{\pi\over2}\ln2+{1\over2}\int_0^\pi\ln(\sin x)\,dx
|
||||
=\int_0^\pi\ln(\sin x)\,dx$$
|
||||
Therefore
|
||||
$$\int_0^\pi\ln(\sin x)\,dx=-\pi\ln2$$
|
||||
Combining the above result with (5) we have
|
||||
$$\int_0^\pi\ln(\sin x)\,dx=-\pi\ln2=2J$$
|
||||
Therefore
|
||||
$$I=J=-{\pi\over2}\ln2$$
|
||||
|
||||
|
||||
\end
|
292
182.tex
Normal file
292
182.tex
Normal file
|
@ -0,0 +1,292 @@
|
|||
\noindent
|
||||
{\it George Weigt -- Geometry Homework \#5}
|
||||
|
||||
\beginsection Page 58, problem 7.
|
||||
|
||||
In the Taxicab Plane show that if $A=(-{5\over2},2)$,
|
||||
$B=({1\over2},2)$, $C=(2,2)$, $P=(0,0)$, $Q=(2,1)$
|
||||
and $R=(3,{3\over2})$ then $A{-}B{-}C$ and $P{-}Q{-}R$.
|
||||
Show that $\overline{AB}\simeq\overline{PQ}$,
|
||||
$\overline{BC}\simeq\overline{QR}$ and
|
||||
$\overline{AC}\simeq\overline{PR}$.
|
||||
Sketch an appropriate picture.
|
||||
\medskip\noindent
|
||||
Solution: First, compute all the distances.
|
||||
$$
|
||||
\eqalign{
|
||||
AB&=\left|-{5\over2}-{1\over2}\right|+|2-2|=3\cr
|
||||
BC&=\left|{1\over2}-2\right|+|2-2|={3\over2}\cr
|
||||
AC&=\left|-{5\over2}-2\right|+|2-2|={9\over2}\cr
|
||||
}
|
||||
$$
|
||||
$$
|
||||
\eqalign{
|
||||
PQ&=|0-2|+|0-1|=3\cr
|
||||
QR&=|2-3|+\left|1-{3\over2}\right|={3\over2}\cr
|
||||
PR&=|0-3|+\left|0-{3\over2}\right|={9\over2}\cr
|
||||
}
|
||||
$$
|
||||
We have $AB+BC=AC$ therefore $A{-}B{-}C$.
|
||||
We have $PQ+QR=PR$ therefore $P{-}Q{-}R$.
|
||||
We have $AB=PQ$ therefore $\overline{AB}\simeq\overline{PQ}$.
|
||||
We have $BC=QR$ therefore $\overline{BC}\simeq\overline{QR}$.
|
||||
We have $AC=PR$ therefore $\overline{AC}\simeq\overline{PR}$.
|
||||
|
||||
\beginsection Page 58, problem 8.
|
||||
|
||||
Let $A=(0,0)$, $B=({1\over10},1$) and $C=(1,1)$ be points in $R^2$
|
||||
with the max distance $d_S(P,Q)=max\{|x_1-x_2|,|y_1-y_2|\}$.
|
||||
Prove that $\overline{AB}\simeq\overline{AC}$.
|
||||
Sketch the two segments. Do they look congruent?
|
||||
\medskip\noindent
|
||||
Solution: First, compute the distances.
|
||||
$$\eqalign{
|
||||
AB=d_S(A,B)&=max\left\{\left|0-{1\over10}\right|,|0-1|\right\}=1\cr
|
||||
AC=d_S(A,C)&=max\{|0-1|,|0-1\}=1\cr
|
||||
}$$
|
||||
We have $AB=AC$ therefore $\overline{AB}\simeq\overline{AC}$.
|
||||
They look congruent when projected onto the $y$-axis.
|
||||
|
||||
\beginsection Page 58, problem 9.
|
||||
|
||||
In the Poincare Plane let $P=(1,2)$ and $Q=(1,4)$.
|
||||
If $A=(0,2)$ and $B=(1,\sqrt3)$, find $C\in\overrightarrow{AB}$ with
|
||||
$\overline{AC}\simeq\overline{PQ}$.
|
||||
\medskip\noindent
|
||||
Solution: First, compute $PQ$, the distance from $P$ to $Q$.
|
||||
For $P$ and $Q$ we have $x_1=x_2$ therefore $P$ and $Q$ are on a type I line.
|
||||
We have
|
||||
$$PQ=\left|\ln{4\over2}\right|=\ln2$$
|
||||
Next, $A$ and $B$ are on a type II line. We have
|
||||
$$c={y_2^2-y_1^2+x_2^2-x_1^2\over2(x_2-x_1)}
|
||||
={3-4+1-0\over2(1-0)}=0,\qquad
|
||||
r=\sqrt{(x_1-c)^2+y_1^2}=2$$
|
||||
Next, apply the standard ruler to $A$ and $B$.
|
||||
$$\eqalign{
|
||||
f(A)&=\ln\left({0-0+2\over 2}\right)=\ln 1=0\cr
|
||||
f(B)&=\ln\left({1-0+2\over\sqrt3}\right)=\ln\sqrt3\cr
|
||||
}$$
|
||||
Next, we want to find $C$. We have
|
||||
$$AC=|f(A)-f(C)|=\ln2$$
|
||||
therefore
|
||||
$$f(C)=f(A)\pm\ln2$$
|
||||
Note that $f(B)>f(A)$.
|
||||
In order to have $C\in\overrightarrow{AB}$ we must choose $f(C)>f(A)$ therefore
|
||||
$$f(C)=f(A)+\ln2=\ln2$$
|
||||
hence
|
||||
$$t=\ln2,\qquad C=(r\tanh t+c,r\mathop{\rm sech} t)=(1.2,1.6)$$
|
||||
Check:
|
||||
$$AC=\left|\ln\left({{0-0+2\over2}\over{1.2-0+2\over1.6}}\right)\right|
|
||||
=\left|\ln{1\over2}\right|=\ln2$$
|
||||
|
||||
\beginsection Page 58, problem 10.
|
||||
|
||||
In the Taxicab Plane let $P=(1,-2)$, $Q=(2,5)$,
|
||||
$A=(4,-1)$ and $B=(3,2)$.
|
||||
Find $C\in\overrightarrow{AB}$ with $\overline{AC}\simeq\overline{PQ}$.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
$$PQ=|1-2|+|-2-5|=8$$
|
||||
$$m={y_2-y_1\over x_2-x_1}={-1-2\over4-3}=-3,
|
||||
\qquad b=y_1-mx_1=11$$
|
||||
$$\eqalign{
|
||||
f(A)&=x(1+|m|)=4(1+|-3|)=16\cr
|
||||
f(B)&=x(1+|m|)=3(1+|-3|)=12\cr
|
||||
}$$
|
||||
We have
|
||||
$$AC=|f(A)-f(C)|=PQ=8$$
|
||||
therefore
|
||||
$$f(C)=f(A)\pm8$$
|
||||
Since $f(B)<f(A)$ we must have $f(C)<f(A)$. Therefore
|
||||
$$f(C)=f(A)-8=8$$
|
||||
hence $x=2$, $y=mx+b=5$, i.e.
|
||||
$$C=(2,5)$$
|
||||
Check:
|
||||
$$AC=|4-2|+|-1-5|=8$$
|
||||
|
||||
\beginsection Page 62, problem 1.
|
||||
|
||||
Prove that $\angle ABC=\angle CBA$ in a metric geometry.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
The objects $\angle ABC$ and $\angle CBA$ are sets of points.
|
||||
Their equivalance is proven by showing that
|
||||
each one is a subset of the other.
|
||||
\item{i.} Let $P\in\angle ABC$.
|
||||
%Then either $P\in\overrightarrow{BA}$ or $P\in\overrightarrow{BC}$.
|
||||
Then $P\in(\overrightarrow{BA}\cup\overrightarrow{BC})$
|
||||
which implies $P\in\angle CBA$.
|
||||
Therefore $\angle ABC\subset\angle CBA$.
|
||||
\item{ii.} Let $P\in\angle CBA$.
|
||||
%Then either $P\in\overrightarrow{BC}$ or $P\in\overrightarrow{BA}$.
|
||||
Then $P\in(\overrightarrow{BC}\cup\overrightarrow{BA})$
|
||||
which implies $P\in\angle ABC$.
|
||||
Therefore $\angle CBA\subset\angle ABC$.
|
||||
\par\noindent
|
||||
By (i) and (ii) above, $\angle ABC=\angle CBA$.
|
||||
Note that asserting membership in a ray
|
||||
requires a betweeness property that is fulfilled by the ruler
|
||||
of a metric geometry.
|
||||
|
||||
\beginsection Page 62, problem 2.
|
||||
|
||||
Let $D$, $E$, and $F$ be three noncollinear points of a metric geometry
|
||||
and let $\ell$ be a line that contains at most one of $D$, $E$, and $F$.
|
||||
Prove that each of
|
||||
$\overleftarrow D\overrightarrow E$,
|
||||
$\overleftarrow D\overrightarrow F$ and
|
||||
$\overleftarrow E\overrightarrow F$ intersects $\ell$ in at most one point.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
By hypothesis
|
||||
$$\ell=\overleftarrow P\overrightarrow Q,\qquad P\ne D,E,F$$
|
||||
In an incidence geometry, two points determine a unique line.
|
||||
Therefore
|
||||
$$
|
||||
\overleftarrow P\overrightarrow Q\ne\overleftarrow D\overrightarrow E,\qquad
|
||||
\overleftarrow P\overrightarrow Q\ne\overleftarrow D\overrightarrow F,\qquad
|
||||
\overleftarrow P\overrightarrow Q\ne\overleftarrow E\overrightarrow F
|
||||
$$
|
||||
In an incidence geometry two lines are either parallel, or they intersect in
|
||||
exactly one point.
|
||||
If $\overleftarrow P\overrightarrow Q$ is parallel to
|
||||
$\overleftarrow D\overrightarrow E$ then the fact that
|
||||
$\overleftarrow P\overrightarrow Q\ne\overleftarrow D\overrightarrow E$
|
||||
implies that
|
||||
$$\overleftarrow P\overrightarrow Q\cap\overleftarrow D\overrightarrow E=\emptyset$$
|
||||
Therefore $\overleftarrow P\overrightarrow Q$ intersects
|
||||
$\overleftarrow D\overrightarrow E$ at one point or not at all.
|
||||
Repeat for $\overleftarrow D\overrightarrow F$ and
|
||||
$\overleftarrow E\overrightarrow F$.
|
||||
|
||||
\beginsection Page 62, problem 3.
|
||||
|
||||
Prove that if $\triangle ABC=\triangle DEF$ in a metric geometry then
|
||||
$\overleftarrow A\overrightarrow B$ contains exactly two of the points
|
||||
$D$, $E$ and $F$.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
By $\triangle ABC=\triangle DEF$ we have
|
||||
$$\overline{AB}\subset\overline{DE}\cup\overline{EF}\cup\overline{FD}$$
|
||||
Consequently, since $D$, $E$ and $F$
|
||||
are not collinear, exactly one of the following is true.
|
||||
$$
|
||||
\overline{AB}\subset\overline{DE}
|
||||
\quad\hbox{or}\quad
|
||||
\overline{AB}\subset\overline{EF}
|
||||
\quad\hbox{or}\quad
|
||||
\overline{AB}\subset\overline{FD}
|
||||
$$
|
||||
%Hence, $A$, $B$ and exactly two of the points $D$, $E$ and $F$ are collinear.
|
||||
Therefore $\overleftarrow A\overrightarrow B$ contains exactly two of the points
|
||||
$D$, $E$ and $F$.
|
||||
|
||||
|
||||
\beginsection Page 62, problem 5.
|
||||
|
||||
In a metric geometry, prove that if $A$, $B$ and $C$ are not collinear
|
||||
then $\overline{AB}=\overleftarrow A\overrightarrow B\cap\triangle ABC$.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
We have
|
||||
$$\eqalign{
|
||||
\overleftarrow A\overrightarrow B\cap\triangle ABC&=
|
||||
(\overleftarrow A\overrightarrow B\cap\overline{AB})\cup
|
||||
(\overleftarrow A\overrightarrow B\cap\overline{BC})\cup
|
||||
(\overleftarrow A\overrightarrow B\cap\overline{CA})\cr
|
||||
&=\overline{AB}\cup\{B\}\cup\{A\}\cr
|
||||
&=\overline{AB}
|
||||
}$$
|
||||
|
||||
\beginsection Page 68, problem 1.
|
||||
|
||||
If $S_1$ and $S_2$ are convex subsets of a metric geometry, prove that
|
||||
$S_1\cap S_2$ is convex.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
Assume $S_1\cap S_2$ contains at least one line segment.
|
||||
Let $P,Q\in S_1\cap S_2$.
|
||||
Then $P,Q\in S_1$ and $P,Q\in S_2$.
|
||||
Hence by hypothesis we have $\overline{PQ}\subset S_1$ and $\overline{PQ}\subset S_2$.
|
||||
This implies that $\overline{PQ}\subset S_1\cap S_2$.
|
||||
Therefore $S_1\cap S_2$ is convex.
|
||||
|
||||
\beginsection Page 68, problem 3.
|
||||
|
||||
If $H_1$ is a half plane determined by $\ell$ prove that $H_1\cup\ell$ is convex.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
We want to show that for every $P,Q\in(H_1\cup\ell)$ we have
|
||||
$\overline{PQ}\subset(H_1\cup\ell)$.
|
||||
There are three cases.
|
||||
\item{i.} $P,Q\in\ell$ implies $\overline{PQ}\subset\ell$.
|
||||
\item{ii.} $P,Q\in H_1$ implies $\overline{PQ}\subset H_1$.
|
||||
\item{iii.} The remaining case is $P\in\ell$ and $Q\in H_1$.
|
||||
Let $X$ be defined such that $P{-}X{-}Q$.
|
||||
Note that $P\not\in\overline{XQ}$ therefore $X$ and $Q$ are in the same
|
||||
half plane, hence $X\in H_1$.
|
||||
Because $H_1$ is convex we have $\overline{XQ}\subset H_1$.
|
||||
Hence $\overline{PQ}\subset(H_1\cup\ell)$.
|
||||
\par\noindent
|
||||
Therefore $H_1\cup\ell$ is convex.
|
||||
|
||||
\beginsection Page 68, problem 4.
|
||||
|
||||
If $H_1$ and $H_2$ are the half planes determined by the line $\ell$,
|
||||
prove that neither $H_1$ nor $H_2$ is empty.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
By definition we have $S-\ell=H_1\cup H_2$.
|
||||
An incidence geometry has at least three points
|
||||
that are not collinear therefore $H_1\cup H_2\ne\emptyset$.
|
||||
Let $P\in\ell$ and $Q\in(H_1\cup H_2)$.
|
||||
Since $Q\not\in\ell$ there is a unique line $\overleftarrow P\overrightarrow Q\ne\ell$.
|
||||
Let $X$ be defined such that $X{-}P{-}Q$. Then $X$ is in one half plane
|
||||
and $Q$ is in the other.
|
||||
Therefore $H_1\ne\emptyset$ and $H_2\ne\emptyset$.
|
||||
|
||||
\beginsection Page 68, problem 5.
|
||||
|
||||
If $H_1$ is a half plane determined by the line $\ell$, prove that
|
||||
$H_1$ has at least three noncollinear points.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
Let $A$ and $B$ be defined such that $A,B\in\ell$, $A\ne B$.
|
||||
Let $C$ be defined such that $C\in H_1$.
|
||||
%Since $A\ne B$ we have
|
||||
%$\overleftarrow A\overrightarrow C\ne\overleftarrow B\overrightarrow C$.
|
||||
%Furthermore, we have
|
||||
%$\overleftarrow A\overrightarrow C\cap\overleftarrow B\overrightarrow C=\{C\}$
|
||||
%since two distinct lines can intersect in at most one point.
|
||||
Let $X$ and $Y$ be defined such that $A{-}X{-}C$ and $B{-}Y{-}C$.
|
||||
Then we have $X,Y\in H_1$
|
||||
along with $Y\not\in\overleftarrow A\overrightarrow C$.
|
||||
Therefore we have $X,Y,C\in H_1$ and $X$, $Y$ and $C$ are not collinear.
|
||||
\medskip\noindent
|
||||
More explanation about $Y\not\in\overleftarrow A\overrightarrow C$.
|
||||
Because $A\ne B$ we have $\overleftarrow A\overrightarrow C\ne\overleftarrow B\overrightarrow C$.
|
||||
Since two distinct lines can intersect in at most one point, and that point is $C$,
|
||||
we have $\overleftarrow A\overrightarrow C\cap\overleftarrow B\overrightarrow C=\{C\}$.
|
||||
Since $Y\in\overleftarrow B\overrightarrow C$ and $Y\not\in\{C\}$,
|
||||
we must have $Y\not\in\overleftarrow A\overrightarrow C$.
|
||||
|
||||
\beginsection Page 68, problem 13.
|
||||
|
||||
If $A$, $B$, $C$ are noncollinear in a metric geometry,
|
||||
prove that $\triangle ABC$ is convex.
|
||||
\medskip\noindent
|
||||
Solution:
|
||||
We have
|
||||
$$\triangle ABC=\overline{AB}\cup\overline{BC}\cup\overline{CA}$$
|
||||
Let $P$ be defined such that $B{-}P{-}C$.
|
||||
Since distinct lines can intersect in at most one point we have
|
||||
$$\eqalign{
|
||||
\overleftarrow A\overrightarrow P\cap\overleftarrow A\overrightarrow B=\{A\}\cr
|
||||
\overleftarrow A\overrightarrow P\cap\overleftarrow A\overrightarrow C=\{A\}\cr
|
||||
\overleftarrow A\overrightarrow P\cap\overleftarrow B\overrightarrow C=\{P\}\cr
|
||||
}$$
|
||||
Therefore $\overleftarrow A\overrightarrow P\cap\triangle ABC=\{A,P\}$.
|
||||
Hence $\overline{AP}\not\subset\triangle ABC$.
|
||||
Therefore $\triangle ABC$ is not convex.
|
||||
|
||||
\end
|
Loading…
Add table
Add a link
Reference in a new issue