*** empty log message ***

This commit is contained in:
George Weigt 2008-02-02 12:08:33 -07:00
parent 967aade72d
commit 4e4492b6ad

View file

@ -1,83 +1,13 @@
\section*{Vector curl}
\section*{Curl in tensor form}
The curl of a vector function can be expressed in tensor form as
$$\mathop{\rm curl}{\bf F}=\epsilon_{ijk}\,{\partial F_k\over\partial x_j}$$
where $\epsilon_{ijk}$ is the Levi-Civita tensor.
The following script demonstrates that this formula is equivalent
to computing curl the old fashioned way.
First, define $\epsilon_{ijk}$.
\medskip
{\tt
epsilon=zero(3,3,3)
\verb$-- Define epsilon.$
epsilon[1,2,3]=1
epsilon[2,3,1]=1
epsilon[3,1,2]=1
epsilon[3,2,1]=-1
epsilon[1,3,2]=-1
epsilon[2,1,3]=-1
}
\medskip
\noindent
Next, define a generic vector function $\bf F$ and
then compute $A=\epsilon_{ijk}\,\partial F_k/\partial x_j$.
The first summation is over $k$ which corresponds to indices 3 and 4.
The second summation is over $j$ which (with $k$ out of the way)
corresponds to indices 2 and 3.
\medskip
{\tt
F=(FX(),FY(),FZ())
A=outer(epsilon,d(F,(x,y,z)))
A=contract(A,3,4)
A=contract(A,2,3)
}
\medskip
\noindent
Now compute curl the old fashioned way and check for equality.
\medskip
{\tt
B=(
\ d(F[3],y)-d(F[2],z),
\ d(F[1],z)-d(F[3],x),
\ d(F[2],x)-d(F[1],y)
)
\medskip
A-B
}
$$\left(\matrix{0\cr0\cr0}\right)$$
\newpage
\noindent
The following is a variation on the previous script.
The product $\epsilon_{ijk}\,\partial F_k/\partial x_j$
is computed in just one line of code.
In addition, there is an optimization.
The outer product and the first contraction have been replaced with a
dot product.
\medskip
\verb$F=(FX(),FY(),FZ())$
\medskip
\verb$epsilon=zero(3,3,3)$
\verb$epsilon[1,2,3]=1$
@ -92,23 +22,73 @@ dot product.
\verb$epsilon[2,1,3]=-1$
\medskip
\verb$A=contract(dot(epsilon,d(F,(x,y,z))),2,3)$
\verb$-- F is a generic vector function.$
\medskip
\verb$B=($
\verb$F=(FX(),FY(),FZ())$
\verb$ d(F[3],y)-d(F[2],z),$
\verb$-- A is the curl of F.$
\verb$ d(F[1],z)-d(F[3],x),$
\verb$A=outer(epsilon,d(F,(x,y,z)))$
\verb$ d(F[2],x)-d(F[1],y)$
\verb$A=contract(A,3,4) --contract across k$
\verb$)$
\verb$A=contract(A,2,3) --contract across j$
\medskip
\verb$--Are A and B equal? Subtract to find out.$
\verb$-- B is the curl of F computed the old fashioned way.$
\verb$BX=d(F[3],y)-d(F[2],z)$
\verb$BY=d(F[1],z)-d(F[3],x)$
\verb$BZ=d(F[2],x)-d(F[1],y)$
\verb$B=(BX,BY,BZ)$
\verb$-- Are A and B equal? Subtract to find out.$
\medskip
\verb$A-B$
$$\left(\matrix{0\cr0\cr0}\right)$$
\newpage
\noindent
The following is a variation on the previous script.
The product $\epsilon_{ijk}\,\partial F_k/\partial x_j$
is computed in just one line of code.
In addition, the outer product and the contraction across $k$
are now computed with a dot product.
\medskip
\verb$F=(FX(),FY(),FZ())$
\verb$epsilon=zero(3,3,3)$
\verb$epsilon[1,2,3]=1$
\verb$epsilon[2,3,1]=1$
\verb$epsilon[3,1,2]=1$
\verb$epsilon[3,2,1]=-1$
\verb$epsilon[1,3,2]=-1$
\verb$epsilon[2,1,3]=-1$
\verb$A=contract(dot(epsilon,d(F,(x,y,z))),2,3)$
\verb$BX=d(F[3],y)-d(F[2],z)$
\verb$BY=d(F[1],z)-d(F[3],x)$
\verb$BZ=d(F[2],x)-d(F[1],y)$
\verb$B=(BX,BY,BZ)$
\verb$-- Are A and B equal? Subtract to find out.$
\verb$A-B$
$$\left(\matrix{0\cr0\cr0}\right)$$