*** empty log message ***
This commit is contained in:
parent
967aade72d
commit
4e4492b6ad
1 changed files with 63 additions and 83 deletions
146
vector-curl.tex
146
vector-curl.tex
|
@ -1,83 +1,13 @@
|
|||
\section*{Vector curl}
|
||||
\section*{Curl in tensor form}
|
||||
The curl of a vector function can be expressed in tensor form as
|
||||
$$\mathop{\rm curl}{\bf F}=\epsilon_{ijk}\,{\partial F_k\over\partial x_j}$$
|
||||
where $\epsilon_{ijk}$ is the Levi-Civita tensor.
|
||||
The following script demonstrates that this formula is equivalent
|
||||
to computing curl the old fashioned way.
|
||||
First, define $\epsilon_{ijk}$.
|
||||
|
||||
\medskip
|
||||
{\tt
|
||||
epsilon=zero(3,3,3)
|
||||
\verb$-- Define epsilon.$
|
||||
|
||||
epsilon[1,2,3]=1
|
||||
|
||||
epsilon[2,3,1]=1
|
||||
|
||||
epsilon[3,1,2]=1
|
||||
|
||||
epsilon[3,2,1]=-1
|
||||
|
||||
epsilon[1,3,2]=-1
|
||||
|
||||
epsilon[2,1,3]=-1
|
||||
}
|
||||
|
||||
\medskip
|
||||
\noindent
|
||||
Next, define a generic vector function $\bf F$ and
|
||||
then compute $A=\epsilon_{ijk}\,\partial F_k/\partial x_j$.
|
||||
The first summation is over $k$ which corresponds to indices 3 and 4.
|
||||
The second summation is over $j$ which (with $k$ out of the way)
|
||||
corresponds to indices 2 and 3.
|
||||
|
||||
\medskip
|
||||
{\tt
|
||||
F=(FX(),FY(),FZ())
|
||||
|
||||
A=outer(epsilon,d(F,(x,y,z)))
|
||||
|
||||
A=contract(A,3,4)
|
||||
|
||||
A=contract(A,2,3)
|
||||
}
|
||||
|
||||
\medskip
|
||||
\noindent
|
||||
Now compute curl the old fashioned way and check for equality.
|
||||
|
||||
\medskip
|
||||
{\tt
|
||||
B=(
|
||||
|
||||
\ d(F[3],y)-d(F[2],z),
|
||||
|
||||
\ d(F[1],z)-d(F[3],x),
|
||||
|
||||
\ d(F[2],x)-d(F[1],y)
|
||||
|
||||
)
|
||||
|
||||
\medskip
|
||||
A-B
|
||||
}
|
||||
|
||||
$$\left(\matrix{0\cr0\cr0}\right)$$
|
||||
|
||||
\newpage
|
||||
|
||||
\noindent
|
||||
The following is a variation on the previous script.
|
||||
The product $\epsilon_{ijk}\,\partial F_k/\partial x_j$
|
||||
is computed in just one line of code.
|
||||
In addition, there is an optimization.
|
||||
The outer product and the first contraction have been replaced with a
|
||||
dot product.
|
||||
|
||||
\medskip
|
||||
\verb$F=(FX(),FY(),FZ())$
|
||||
|
||||
\medskip
|
||||
\verb$epsilon=zero(3,3,3)$
|
||||
|
||||
\verb$epsilon[1,2,3]=1$
|
||||
|
@ -92,23 +22,73 @@ dot product.
|
|||
|
||||
\verb$epsilon[2,1,3]=-1$
|
||||
|
||||
\medskip
|
||||
\verb$A=contract(dot(epsilon,d(F,(x,y,z))),2,3)$
|
||||
\verb$-- F is a generic vector function.$
|
||||
|
||||
\medskip
|
||||
\verb$B=($
|
||||
\verb$F=(FX(),FY(),FZ())$
|
||||
|
||||
\verb$ d(F[3],y)-d(F[2],z),$
|
||||
\verb$-- A is the curl of F.$
|
||||
|
||||
\verb$ d(F[1],z)-d(F[3],x),$
|
||||
\verb$A=outer(epsilon,d(F,(x,y,z)))$
|
||||
|
||||
\verb$ d(F[2],x)-d(F[1],y)$
|
||||
\verb$A=contract(A,3,4) --contract across k$
|
||||
|
||||
\verb$)$
|
||||
\verb$A=contract(A,2,3) --contract across j$
|
||||
|
||||
\medskip
|
||||
\verb$--Are A and B equal? Subtract to find out.$
|
||||
\verb$-- B is the curl of F computed the old fashioned way.$
|
||||
|
||||
\verb$BX=d(F[3],y)-d(F[2],z)$
|
||||
|
||||
\verb$BY=d(F[1],z)-d(F[3],x)$
|
||||
|
||||
\verb$BZ=d(F[2],x)-d(F[1],y)$
|
||||
|
||||
\verb$B=(BX,BY,BZ)$
|
||||
|
||||
\verb$-- Are A and B equal? Subtract to find out.$
|
||||
|
||||
\medskip
|
||||
\verb$A-B$
|
||||
|
||||
$$\left(\matrix{0\cr0\cr0}\right)$$
|
||||
|
||||
\newpage
|
||||
|
||||
\noindent
|
||||
The following is a variation on the previous script.
|
||||
The product $\epsilon_{ijk}\,\partial F_k/\partial x_j$
|
||||
is computed in just one line of code.
|
||||
In addition, the outer product and the contraction across $k$
|
||||
are now computed with a dot product.
|
||||
|
||||
\medskip
|
||||
\verb$F=(FX(),FY(),FZ())$
|
||||
|
||||
\verb$epsilon=zero(3,3,3)$
|
||||
|
||||
\verb$epsilon[1,2,3]=1$
|
||||
|
||||
\verb$epsilon[2,3,1]=1$
|
||||
|
||||
\verb$epsilon[3,1,2]=1$
|
||||
|
||||
\verb$epsilon[3,2,1]=-1$
|
||||
|
||||
\verb$epsilon[1,3,2]=-1$
|
||||
|
||||
\verb$epsilon[2,1,3]=-1$
|
||||
|
||||
\verb$A=contract(dot(epsilon,d(F,(x,y,z))),2,3)$
|
||||
|
||||
\verb$BX=d(F[3],y)-d(F[2],z)$
|
||||
|
||||
\verb$BY=d(F[1],z)-d(F[3],x)$
|
||||
|
||||
\verb$BZ=d(F[2],x)-d(F[1],y)$
|
||||
|
||||
\verb$B=(BX,BY,BZ)$
|
||||
|
||||
\verb$-- Are A and B equal? Subtract to find out.$
|
||||
|
||||
\verb$A-B$
|
||||
|
||||
$$\left(\matrix{0\cr0\cr0}\right)$$
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue