add
This commit is contained in:
parent
c070e38e1b
commit
6b1a62aa53
2 changed files with 222 additions and 187 deletions
187
example2
187
example2
|
@ -1,52 +1,32 @@
|
|||
; Page references are for the book "Gravitation."
|
||||
|
||||
; generic metric
|
||||
|
||||
(setq gdd (sum
|
||||
(product (g00) (tensor x0 x0))
|
||||
(product (g11) (tensor x1 x1))
|
||||
(product (g22) (tensor x2 x2))
|
||||
(product (g33) (tensor x3 x3))
|
||||
))
|
||||
|
||||
(gr) ; compute g, guu, GAMUDD, RUDDD, RDD, R, GDD, GUD and GUU
|
||||
|
||||
; generic vectors
|
||||
|
||||
(setq u (sum
|
||||
(product (u0) (tensor x0))
|
||||
(product (u1) (tensor x1))
|
||||
(product (u2) (tensor x2))
|
||||
(product (u3) (tensor x3))
|
||||
))
|
||||
|
||||
(setq v (sum
|
||||
(product (v0) (tensor x0))
|
||||
(product (v1) (tensor x1))
|
||||
(product (v2) (tensor x2))
|
||||
(product (v3) (tensor x3))
|
||||
))
|
||||
|
||||
(setq w (sum
|
||||
(product (w0) (tensor x0))
|
||||
(product (w1) (tensor x1))
|
||||
(product (w2) (tensor x2))
|
||||
(product (w3) (tensor x3))
|
||||
))
|
||||
|
||||
<hr>
|
||||
|
||||
$$V_{[\mu\nu\lambda]}={1\over3!}
|
||||
(V_{\mu\nu\lambda}
|
||||
+V_{\nu\lambda\mu}
|
||||
+V_{\lambda\mu\nu}
|
||||
-V_{\nu\mu\lambda}
|
||||
-V_{\mu\lambda\nu}
|
||||
-V_{\lambda\nu\mu}
|
||||
)$$
|
||||
|
||||
; how to antisymmetrize three indices (p. 86)
|
||||
|
||||
(setq V (sum
|
||||
(product 1/6 V)
|
||||
(product 1/6 (transpose12 (transpose23 V))) ; nu lambda mu -> mu nu lambda
|
||||
|
@ -55,97 +35,42 @@ $$V_{[\mu\nu\lambda]}={1\over3!}
|
|||
(product -1/6 (transpose23 V)) ; mu lambda nu -> mu nu lambda
|
||||
(product -1/6 (transpose13 V)) ; lambda nu mu -> mu nu lambda
|
||||
))
|
||||
|
||||
<hr>
|
||||
|
||||
$$[{\bf u},{\bf v}]=
|
||||
(u^\beta{v^\alpha}_{,\beta}-v^\beta{u^\alpha}_{,\beta}){\bf e}_\alpha$$
|
||||
|
||||
; commutator (p. 206)
|
||||
|
||||
(define commutator (sum
|
||||
(contract13 (product +1 arg1 (gradient arg2)))
|
||||
(contract13 (product -1 arg2 (gradient arg1)))
|
||||
))
|
||||
|
||||
<hr>
|
||||
|
||||
$${\Gamma^\alpha}_{\mu\nu}=\hbox{$1\over2$}g^{\alpha\beta}
|
||||
(g_{\beta\mu,\nu}+g_{\beta\nu,\mu}-g_{\mu\nu,\beta})$$
|
||||
|
||||
(print "connection coefficients (p. 210)")
|
||||
|
||||
(setq temp (gradient gdd))
|
||||
|
||||
(setq Gamma (contract23 (product 1/2 guu (sum
|
||||
temp
|
||||
(transpose23 temp)
|
||||
(product -1 (transpose12 (transpose23 temp)))
|
||||
))))
|
||||
|
||||
; check
|
||||
|
||||
(print (equal Gamma GAMUDD))
|
||||
|
||||
<hr>
|
||||
|
||||
$${T^\alpha}_{;\gamma}={T^\alpha}_{,\gamma}+
|
||||
T^\mu{\Gamma^\alpha}_{\mu\gamma}$$
|
||||
|
||||
; covariant derivative of a vector (p. 211)
|
||||
|
||||
(define covariant-derivative (sum
|
||||
(gradient arg)
|
||||
(contract13 (product arg GAMUDD))
|
||||
))
|
||||
|
||||
<hr>
|
||||
|
||||
$${G^{\mu\nu}}_{;\nu}=0$$
|
||||
|
||||
(print "divergence of einstein is zero (p. 222)")
|
||||
|
||||
; covariant-derivative-of-up-up is already defined in grlib
|
||||
|
||||
(setq temp (covariant-derivative-of-up-up GUU))
|
||||
|
||||
(setq temp (contract23 temp)) ; sum over 2nd and 3rd indices
|
||||
|
||||
(print (equal temp 0))
|
||||
|
||||
<hr>
|
||||
|
||||
$${R^\alpha}_{\beta\gamma\delta}=
|
||||
{\partial{\Gamma^\alpha}_{\beta\delta}\over\partial x^\gamma}-
|
||||
{\partial{\Gamma^\alpha}_{\beta\gamma}\over\partial x^\delta}+
|
||||
{\Gamma^\alpha}_{\mu\gamma}{\Gamma^\mu}_{\beta\delta}-
|
||||
{\Gamma^\alpha}_{\mu\delta}{\Gamma^\mu}_{\beta\gamma}$$
|
||||
|
||||
(print "computing riemann tensor (p. 219)")
|
||||
|
||||
(setq temp1 (gradient GAMUDD))
|
||||
|
||||
(setq temp2 (contract24 (product GAMUDD GAMUDD)))
|
||||
|
||||
(setq riemann (sum
|
||||
(transpose34 temp1)
|
||||
(product -1 temp1)
|
||||
(transpose23 temp2)
|
||||
(product -1 (transpose34 (transpose23 temp2)))
|
||||
))
|
||||
|
||||
; check
|
||||
|
||||
(print (equal riemann RUDDD))
|
||||
|
||||
<hr>
|
||||
|
||||
$$T_{\alpha\beta;\gamma}=T_{\alpha\beta,\gamma}
|
||||
-T_{\mu\beta}{\Gamma^\mu}_{\alpha\gamma}
|
||||
-T_{\alpha\mu}{\Gamma^\mu}_{\beta\gamma}$$
|
||||
|
||||
; p. 259
|
||||
|
||||
(define covariant-derivative-of-down-down (prog (temp)
|
||||
(setq temp (product arg GAMUDD))
|
||||
(return (sum
|
||||
|
@ -154,13 +79,6 @@ $$T_{\alpha\beta;\gamma}=T_{\alpha\beta,\gamma}
|
|||
(product -1 (contract23 temp))
|
||||
))
|
||||
))
|
||||
|
||||
<hr>
|
||||
|
||||
$${T^\alpha}_{\beta;\gamma}={T^\alpha}_{\beta,\gamma}+
|
||||
{T^\mu}_\beta{\Gamma^\alpha}_{\mu\gamma}-
|
||||
{T^\alpha}_\mu{\Gamma^\mu}_{\beta\gamma}$$
|
||||
|
||||
(define covariant-derivative-of-up-down (prog (temp)
|
||||
(setq temp (product arg GAMUDD))
|
||||
(return (sum
|
||||
|
@ -169,81 +87,37 @@ $${T^\alpha}_{\beta;\gamma}={T^\alpha}_{\beta,\gamma}+
|
|||
(product -1 (contract23 temp))
|
||||
))
|
||||
))
|
||||
|
||||
<hr>
|
||||
|
||||
$$\nabla_{\bf u}{\bf v}={v^\alpha}_{;\beta}u^{\beta}$$
|
||||
|
||||
(define directed-covariant-derivative
|
||||
(contract23 (product (covariant-derivative arg1) arg2))
|
||||
)
|
||||
|
||||
<hr>
|
||||
|
||||
$$\nabla_{\bf u}{\bf v}-\nabla_{\bf v}{\bf u}=[{\bf u},{\bf v}]$$
|
||||
|
||||
(print "symmetry of covariant derivative (p. 252)")
|
||||
|
||||
(setq temp1 (sum
|
||||
(directed-covariant-derivative v u)
|
||||
(product -1 (directed-covariant-derivative u v))
|
||||
))
|
||||
|
||||
(setq temp2 (commutator u v))
|
||||
|
||||
(equal temp1 temp2)
|
||||
|
||||
<hr>
|
||||
|
||||
$$\nabla_{\bf u}(f{\bf v})=
|
||||
f\nabla_{\bf u}{\bf v}+{\bf v}\partial_{\bf u}f$$
|
||||
|
||||
(print "covariant derivative chain rule (p. 252)")
|
||||
|
||||
(setq temp1 (directed-covariant-derivative (product (f) v) u))
|
||||
|
||||
(setq temp2 (sum
|
||||
(product (f) (directed-covariant-derivative v u))
|
||||
(product v (contract12 (product (gradient (f)) u)))
|
||||
))
|
||||
|
||||
(print (equal temp1 temp2))
|
||||
|
||||
<hr>
|
||||
|
||||
$$\nabla_{{\bf v}+{\bf w}}{\bf u}=
|
||||
\nabla_{\bf v}{\bf u}+\nabla_{\bf w}{\bf u}$$
|
||||
|
||||
(print "additivity of covariant derivative (p. 257)")
|
||||
|
||||
(setq temp1 (directed-covariant-derivative u (sum v w)))
|
||||
|
||||
(setq temp2 (sum
|
||||
(directed-covariant-derivative u v)
|
||||
(directed-covariant-derivative u w)
|
||||
))
|
||||
|
||||
(print (equal temp1 temp2))
|
||||
|
||||
<hr>
|
||||
|
||||
$${R^\alpha}_{\beta\gamma\delta}={R^\alpha}_{\beta[\gamma\delta]}$$
|
||||
|
||||
(print "riemann is antisymmetric on last two indices (p. 286)")
|
||||
|
||||
(setq temp (sum
|
||||
(product 1/2 RUDDD)
|
||||
(product -1/2 (transpose34 RUDDD))
|
||||
))
|
||||
|
||||
(print (equal RUDDD temp))
|
||||
|
||||
<hr>
|
||||
|
||||
$${R^\alpha}_{[\beta\gamma\delta]}=0$$
|
||||
|
||||
(print "riemann vanishes when antisymmetrized on last three indices (p. 286)")
|
||||
|
||||
(setq temp (sum
|
||||
(product 1/6 RUDDD)
|
||||
(product 1/6 (transpose34 (transpose24 RUDDD)))
|
||||
|
@ -252,92 +126,51 @@ $${R^\alpha}_{[\beta\gamma\delta]}=0$$
|
|||
(product -1/6 (transpose34 RUDDD))
|
||||
(product -1/6 (transpose24 RUDDD))
|
||||
))
|
||||
|
||||
(print (equal temp 0))
|
||||
|
||||
<hr>
|
||||
|
||||
$${G^{\alpha\beta}}_{\gamma\delta}=
|
||||
\hbox{$1\over2$}\epsilon^{\alpha\beta\mu\nu}
|
||||
{R_{\mu\nu}}^{\rho\sigma}
|
||||
\hbox{$1\over2$}\epsilon_{\rho\sigma\gamma\delta}$$
|
||||
|
||||
(print "double dual of riemann (p. 325)")
|
||||
|
||||
(setq temp (contract23 (product gdd RUDDD))) ; lower 1st index
|
||||
(setq temp (transpose34 (contract35 (product temp guu)))) ; raise 3rd index
|
||||
(setq RDDUU (contract45 (product temp guu))) ; raise 4th index
|
||||
|
||||
(setq temp (product epsilon RDDUU))
|
||||
|
||||
(setq temp (contract35 temp)) ; sum over mu
|
||||
(setq temp (contract34 temp)) ; sum over nu
|
||||
|
||||
(setq temp (product temp epsilon))
|
||||
|
||||
(setq temp (contract35 temp)) ; sum over rho
|
||||
(setq temp (contract34 temp)) ; sum over sigma
|
||||
|
||||
(setq GUUDD (product -1/4 temp)) ; negative due to levi-civita tensor
|
||||
|
||||
; check
|
||||
|
||||
(print (equal
|
||||
(contract13 GUUDD)
|
||||
GUD
|
||||
))
|
||||
|
||||
<hr>
|
||||
|
||||
$${B^\mu}_{;\alpha\beta}-{B^\mu}_{;\beta\alpha}=
|
||||
{R^\mu}_{\nu\beta\alpha}B^\nu$$
|
||||
|
||||
(print "noncommutation of covariant derivatives (p. 389)")
|
||||
|
||||
(setq B (sum
|
||||
(product (B0) (tensor x0))
|
||||
(product (B1) (tensor x1))
|
||||
(product (B2) (tensor x2))
|
||||
(product (B3) (tensor x3))
|
||||
))
|
||||
|
||||
(setq temp (covariant-derivative-of-up-down (covariant-derivative B)))
|
||||
|
||||
(setq temp1 (sum temp (product -1 (transpose23 temp))))
|
||||
|
||||
(setq temp2 (transpose23 (contract25 (product RUDDD B))))
|
||||
|
||||
(print (equal temp1 temp2))
|
||||
|
||||
<hr>
|
||||
|
||||
(print "bondi metric")
|
||||
|
||||
; erase any definitions for U, V, beta and gamma
|
||||
|
||||
(setq U (quote U))
|
||||
(setq V (quote V))
|
||||
(setq beta (quote beta))
|
||||
(setq gamma (quote gamma))
|
||||
|
||||
; erase any definitions for u, r, theta and phi
|
||||
|
||||
(setq u (quote u))
|
||||
(setq r (quote r))
|
||||
(setq theta (quote theta))
|
||||
(setq phi (quote phi))
|
||||
|
||||
; new coordinate system
|
||||
|
||||
(setq x0 u)
|
||||
(setq x1 r)
|
||||
(setq x2 theta)
|
||||
(setq x3 phi)
|
||||
|
||||
; U, V, beta and gamma are functions of u, r and theta
|
||||
|
||||
$$g_{uu}=Ve^{2\beta}/r-U^2r^2e^{2\gamma}$$
|
||||
|
||||
(setq g_uu (sum
|
||||
(product
|
||||
(V u r theta)
|
||||
|
@ -351,39 +184,25 @@ $$g_{uu}=Ve^{2\beta}/r-U^2r^2e^{2\gamma}$$
|
|||
(power e (product 2 (gamma u r theta)))
|
||||
)
|
||||
))
|
||||
|
||||
$$g_{ur}=2e^{2\beta}$$
|
||||
|
||||
(setq g_ur (product 2 (power e (product 2 (beta u r theta)))))
|
||||
|
||||
$$g_{u\theta}=2Ur^2e^{2\gamma}$$
|
||||
|
||||
(setq g_utheta (product
|
||||
2
|
||||
(U u r theta)
|
||||
(power r 2)
|
||||
(power e (product 2 (gamma u r theta)))
|
||||
))
|
||||
|
||||
$$g_{\theta\theta}=-r^2e^{2\gamma}$$
|
||||
|
||||
(setq g_thetatheta (product
|
||||
-1
|
||||
(power r 2)
|
||||
(power e (product 2 (gamma u r theta)))
|
||||
))
|
||||
|
||||
$$g_{\phi\phi}=-r^2e^{-2\gamma}\sin^2\theta$$
|
||||
|
||||
(setq g_phiphi (product
|
||||
-1
|
||||
(power r 2)
|
||||
(power e (product -2 (gamma u r theta)))
|
||||
(power (sin theta) 2)
|
||||
))
|
||||
|
||||
; metric tensor
|
||||
|
||||
(setq gdd (sum
|
||||
(product g_uu (tensor u u))
|
||||
(product g_ur (tensor u r))
|
||||
|
@ -393,15 +212,9 @@ $$g_{\phi\phi}=-r^2e^{-2\gamma}\sin^2\theta$$
|
|||
(product g_thetatheta (tensor theta theta))
|
||||
(product g_phiphi (tensor phi phi))
|
||||
))
|
||||
|
||||
(gr) ; compute g, guu, GAMUDD, RUDDD, RDD, R, GDD, GUD and GUU
|
||||
|
||||
; is covariant derivative of metric zero?
|
||||
|
||||
(print (equal (covariant-derivative-of-down-down gdd) 0))
|
||||
|
||||
; is divergence of einstein zero?
|
||||
|
||||
(setq temp (contract23 (covariant-derivative-of-up-up GUU)))
|
||||
|
||||
(print (equal temp 0))
|
||||
|
|
222
qed.lisp
Normal file
222
qed.lisp
Normal file
|
@ -0,0 +1,222 @@
|
|||
; From "Quantum Electrodynamics" by Richard P. Feynman
|
||||
; pp. 40-43
|
||||
; generic spacetime vectors a, b and c
|
||||
(setq a (sum
|
||||
(product at (tensor t))
|
||||
(product ax (tensor x))
|
||||
(product ay (tensor y))
|
||||
(product az (tensor z))
|
||||
))
|
||||
(setq b (sum
|
||||
(product bt (tensor t))
|
||||
(product bx (tensor x))
|
||||
(product by (tensor y))
|
||||
(product bz (tensor z))
|
||||
))
|
||||
(setq c (sum
|
||||
(product ct (tensor t))
|
||||
(product cx (tensor x))
|
||||
(product cy (tensor y))
|
||||
(product cz (tensor z))
|
||||
))
|
||||
; define this function for multiplying spactime vectors
|
||||
; how it works: (dot arg1 (tensor t)) picks off the t'th element, etc.
|
||||
; the -1's are for the spacetime metric
|
||||
(define spacetime-dot (sum
|
||||
(dot (dot arg1 (tensor t)) (dot arg2 (tensor t)))
|
||||
(dot -1 (dot arg1 (tensor x)) (dot arg2 (tensor x)))
|
||||
(dot -1 (dot arg1 (tensor y)) (dot arg2 (tensor y)))
|
||||
(dot -1 (dot arg1 (tensor z)) (dot arg2 (tensor z)))
|
||||
))
|
||||
(setq temp1 (spacetime-dot a a))
|
||||
(setq temp2 (sum
|
||||
(power at 2)
|
||||
(product -1 (power ax 2))
|
||||
(product -1 (power ay 2))
|
||||
(product -1 (power az 2))
|
||||
))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
(setq I (sum
|
||||
(tensor t t)
|
||||
(tensor x x)
|
||||
(tensor y y)
|
||||
(tensor z z)
|
||||
))
|
||||
(setq gammat (sum
|
||||
(tensor t t)
|
||||
(tensor x x)
|
||||
(product -1 (tensor y y))
|
||||
(product -1 (tensor z z))
|
||||
))
|
||||
(setq gammax (sum
|
||||
(tensor t z)
|
||||
(tensor x y)
|
||||
(product -1 (tensor y x))
|
||||
(product -1 (tensor z t))
|
||||
))
|
||||
(setq gammay (sum
|
||||
(product -1 i (tensor t z))
|
||||
(product i (tensor x y))
|
||||
(product i (tensor y x))
|
||||
(product -1 i (tensor z t))
|
||||
))
|
||||
(setq gammaz (sum
|
||||
(tensor t y)
|
||||
(product -1 (tensor x z))
|
||||
(product -1 (tensor y t))
|
||||
(tensor z x)
|
||||
))
|
||||
(equal (dot gammat gammat) I) ; print "t" if it's true
|
||||
(equal (dot gammax gammax) (dot -1 I)) ; print "t" if it's true
|
||||
(equal (dot gammay gammay) (dot -1 I)) ; print "t" if it's true
|
||||
(equal (dot gammaz gammaz) (dot -1 I)) ; print "t" if it's true
|
||||
(setq gamma5 (dot gammax gammay gammaz gammat))
|
||||
(equal (dot gamma5 gamma5) (dot -1 I)) ; print "t" if it's true
|
||||
; gamma is a "vector" of dirac matrices
|
||||
(setq gamma (sum
|
||||
(product gammat (tensor t))
|
||||
(product gammax (tensor x))
|
||||
(product gammay (tensor y))
|
||||
(product gammaz (tensor z))
|
||||
))
|
||||
(setq agamma (spacetime-dot a gamma))
|
||||
(setq bgamma (spacetime-dot b gamma))
|
||||
(setq cgamma (spacetime-dot c gamma))
|
||||
(setq temp1 agamma)
|
||||
(setq temp2 (sum
|
||||
(product at gammat)
|
||||
(product -1 ax gammax)
|
||||
(product -1 ay gammay)
|
||||
(product -1 az gammaz)
|
||||
))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
; note: gammas are square matrices, use "dot" to multiply
|
||||
; use "spacetime-dot" to multiply spacetime vectors
|
||||
(setq temp1 (dot agamma bgamma))
|
||||
(setq temp2 (sum
|
||||
(dot -1 bgamma agamma)
|
||||
(dot 2 (spacetime-dot a b) I)
|
||||
))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
(setq temp1 (dot agamma gamma5))
|
||||
(setq temp2 (dot -1 gamma5 agamma))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
(setq temp1 (dot gammax agamma gammax))
|
||||
(setq temp2 (sum agamma (dot 2 ax gammax)))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
(setq temp1 (spacetime-dot gamma gamma))
|
||||
(setq temp2 (dot 4 I))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
(setq temp1 (spacetime-dot gamma (dot agamma gamma)))
|
||||
(setq temp2 (dot -2 agamma))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
(setq temp1 (spacetime-dot gamma (dot agamma bgamma gamma)))
|
||||
(setq temp2 (dot 4 (spacetime-dot a b) I))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
(setq temp1 (spacetime-dot gamma (dot agamma bgamma cgamma gamma)))
|
||||
(setq temp2 (dot -2 cgamma bgamma agamma))
|
||||
(equal temp1 temp2) ; print "t" if it's true
|
||||
; define series approximations for some transcendental functions
|
||||
; for 32-bit integers, overflow occurs for powers above 5
|
||||
(define order 5)
|
||||
(define yexp (prog temp count
|
||||
(setq temp 0)
|
||||
(setq count order)
|
||||
loop
|
||||
(setq temp (product (power count -1) arg (sum 1 temp)))
|
||||
(setq count (sum count -1))
|
||||
(cond ((greaterp count 0) (goto loop)))
|
||||
(return (sum 1 temp))
|
||||
))
|
||||
(define ysin (sum
|
||||
(product -1/2 i (yexp (product i arg)))
|
||||
(product 1/2 i (yexp (product -1 i arg)))
|
||||
))
|
||||
(define ycos (sum
|
||||
(product 1/2 (yexp (product i arg)))
|
||||
(product 1/2 (yexp (product -1 i arg)))
|
||||
))
|
||||
(define ysinh (sum
|
||||
(product 1/2 (yexp arg))
|
||||
(product -1/2 (yexp (product -1 arg)))
|
||||
))
|
||||
(define ycosh (sum
|
||||
(product 1/2 (yexp arg))
|
||||
(product 1/2 (yexp (product -1 arg)))
|
||||
))
|
||||
; same as above but for matrices
|
||||
(define YEXP (prog temp count
|
||||
(setq temp 0)
|
||||
(setq count order)
|
||||
loop
|
||||
(setq temp (dot (power count -1) arg (sum I temp)))
|
||||
(setq count (sum count -1))
|
||||
(cond ((greaterp count 0) (goto loop)))
|
||||
(return (sum I temp))
|
||||
))
|
||||
(define YSIN (sum
|
||||
(product -1/2 i (YEXP (product i arg)))
|
||||
(product 1/2 i (YEXP (product -1 i arg)))
|
||||
))
|
||||
(define YCOS (sum
|
||||
(product 1/2 (YEXP (product i arg)))
|
||||
(product 1/2 (YEXP (product -1 i arg)))
|
||||
))
|
||||
(define YSINH (sum
|
||||
(product 1/2 (YEXP arg))
|
||||
(product -1/2 (YEXP (product -1 arg)))
|
||||
))
|
||||
(define YCOSH (sum
|
||||
(product 1/2 (YEXP arg))
|
||||
(product 1/2 (YEXP (product -1 arg)))
|
||||
))
|
||||
; for truncating products of power series
|
||||
(define POWER (cond
|
||||
((greaterp arg2 order) 0)
|
||||
(t (list 'power arg1 arg2))
|
||||
))
|
||||
(define truncate (eval (subst 'POWER 'power arg)))
|
||||
(setq temp1 (YEXP (dot 1/2 u gammat gammax)))
|
||||
(setq temp2 (sum
|
||||
(product I (ycosh (product 1/2 u))) ; could use "dot" but not necessary
|
||||
(dot gammat gammax (ysinh (product 1/2 u)))
|
||||
))
|
||||
(equal temp1 temp2) ; print t if it's true
|
||||
(setq temp1 (YEXP (dot 1/2 theta gammax gammay)))
|
||||
(setq temp2 (sum
|
||||
(product I (ycos (product 1/2 theta))) ; could use "dot" but not necessary
|
||||
(dot gammax gammay (ysin (product 1/2 theta)))
|
||||
))
|
||||
(equal temp1 temp2) ; print t if it's true
|
||||
(setq temp1 (truncate (dot
|
||||
(YEXP (dot -1/2 u gammat gammaz))
|
||||
gammat
|
||||
(YEXP (dot 1/2 u gammat gammaz))
|
||||
)))
|
||||
(setq temp2 (sum
|
||||
(product gammat (ycosh u)) ; could use "dot" but not necessary
|
||||
(product gammaz (ysinh u)) ; could use "dot" but not necessary
|
||||
))
|
||||
(equal temp1 temp2) ; print t if it's true
|
||||
(setq temp1 (truncate (dot
|
||||
(YEXP (dot -1/2 u gammat gammaz))
|
||||
gammaz
|
||||
(YEXP (dot 1/2 u gammat gammaz))
|
||||
)))
|
||||
(setq temp2 (sum
|
||||
(product gammaz (ycosh u)) ; could use "dot" but not necessary
|
||||
(product gammat (ysinh u)) ; could use "dot" but not necessary
|
||||
))
|
||||
(equal temp1 temp2) ; print t if it's true
|
||||
(setq temp1 (truncate (dot
|
||||
(YEXP (dot -1/2 u gammat gammaz))
|
||||
gammay
|
||||
(YEXP (dot 1/2 u gammat gammaz))
|
||||
)))
|
||||
(equal temp1 gammay) ; print t if it's true
|
||||
(setq temp1 (truncate (dot
|
||||
(YEXP (dot -1/2 u gammat gammaz))
|
||||
gammax
|
||||
(YEXP (dot 1/2 u gammat gammaz))
|
||||
)))
|
||||
(equal temp1 gammax) ; print t if it's true
|
Loading…
Add table
Add a link
Reference in a new issue