This commit is contained in:
George Weigt 2006-03-02 20:25:30 -07:00
parent e52473d8a9
commit 6e79865aef

78
75.tex Normal file
View file

@ -0,0 +1,78 @@
\parindent=0pt
\magnification=1200
Statistical Methods
\bigskip
1. Confidence interval for $\mu$, variance ($\sigma^2$) is known
$$\bar Y\pm Z_{\alpha/2}\,{\sigma\over\sqrt n}$$
2. Confidence interval for $\mu$, variance is unknown, normal distribution
$$\bar Y\pm t_{(n-1,\alpha/2)}\,{S\over\sqrt n}$$
3. Confidence interval for $\mu$, variance is unknown, large sample size
$$\bar Y\pm Z_{\alpha/2}\,{S\over\sqrt n}$$
4. Confidence interval for proportion $p$, $\hat p=Y/n$
$$\hat p\pm Z_{\alpha/2}\,\sqrt{\hat p(1-\hat p)\over n}$$
5. Confidence interval for population variance $\sigma^2$, normal distribution
$$\left({(n-1)S^2\over\chi^2_{(n-1,\alpha/2)}},\,
{(n-1)S^2\over\chi^2_{(n-1,1-\alpha/2)}}\right)$$
6. Sample size for estimating population mean $\mu$ (can use $S$ for $\sigma$)
$$n=(Z_{\alpha/2}\,\sigma/\epsilon)^2$$
7. Sample size for estimating proportion with estimate
$$n=(Z_{\alpha/2}/\epsilon)^2\times p_E\times(1-p_E)$$
8. Sample size for estimating proportion, no estimate available
$$n=(Z_{\alpha/2}/(2\epsilon))^2$$
\vfill
\eject
9. Confidence interval for difference of means $\mu_X-\mu_Y$,
both variances are known.
$$(X-Y)\pm\left(Z_{\alpha/2}\times\sqrt{{\sigma_X^2\over n}
+{\sigma_Y^2\over m}}\,\right)$$
10. Confidence interval for difference of means $\mu_X-\mu_Y$,
both variances are unknown and equal
$$S_p=\sqrt{(n-1)S_X^2+(m-1)S_Y^2\over n+m-2}$$
$$(X-Y)\pm\left(t_{(n-1,\alpha/2)}\times S_p\times
\sqrt{{1\over n}+{1\over m}}\,\right)$$
11. Confidence interval for difference of means $\mu_X-\mu_Y$,
both variances are unknown and not equal
$$\nu={(S_X^2/n+S_Y^2/m)^2\over
(S_X^2/n)^2/(n-1)+(S_Y^2/m)^2/(m-1)}$$
$$(X-Y)\pm\left(t_{(\nu,\alpha/2)}\times\sqrt{
{S_X^2\over n}+{S_Y^2\over m}}\,\right)$$
12. Confidence interval for difference of means $\mu_X-\mu_Y$,
both variances are unknown, both sample sizes are large
$$(X-Y)\pm\left(
Z_{\alpha/2}\times\sqrt{
{S_X^2\over n}+{S_Y^2\over m}
}\,\right)$$
13. Confidence interval for difference of means $\mu_X-\mu_Y$,
samples are match paired, $D_j=X_j-Y_j$
$$\bar D\pm\left(t_{(n-1,\alpha/2)}\times{S_D\over\sqrt n}\,\right)$$
14. Confidence interval for difference of proportions $p_X-p_Y$
$$\hat p_X=X/n,\qquad\hat p_Y=Y/m$$
$$(\hat p_X-\hat p_Y)\pm\left(
Z_{\alpha/2}\times\sqrt{
{\hat p_X(1-\hat p_X)\over n}+
{\hat p_Y(1-\hat p_Y)\over m}
}\,\right)$$
15. Confidence interval for ratio of population variances $\sigma_X^2/\sigma_Y^2$
$$\left(
{S_X^2\over S_Y^2\times F_{(n-1,m-1,\alpha/2)}}
,\,
{S_X^2\times F_{(m-1,n-1,\alpha/2)}\over S_Y^2}
\right)$$
\end