add
This commit is contained in:
parent
ca27bf0107
commit
7c01fd4949
12 changed files with 921 additions and 0 deletions
24
11.tex
Normal file
24
11.tex
Normal file
|
@ -0,0 +1,24 @@
|
|||
Example 1. Prove that $\lim(1/n^2)=0$.
|
||||
|
||||
1. Let $\epsilon>0$.
|
||||
|
||||
2. Let $N=1/\sqrt\epsilon$. (As follows: Start with $1/N^2=\epsilon$. Flip both sides to get
|
||||
$N^2=1/\epsilon$. Square root of both sides to get $N=1/\sqrt\epsilon$.)
|
||||
|
||||
3. Now take the assertion $n>N$ and manipulate as follows:
|
||||
|
||||
4. Substitute $1/\sqrt\epsilon$ for $N$: $n>1/\sqrt\epsilon$
|
||||
|
||||
5. Square both sides: $n^2>1/\epsilon$
|
||||
|
||||
6. Multiply both sides by $\epsilon/n^2$: $\epsilon>1/n^2$
|
||||
|
||||
7. Flip end-to-end: $1/n^2<\epsilon$
|
||||
|
||||
8. Dress it up a little: $|1/n^2-0|<\epsilon$
|
||||
|
||||
9. Thus $n>N$ implies $|1/n^2-0|<\epsilon$
|
||||
|
||||
10. This proves that $\lim(1/n^2)=0$.
|
||||
|
||||
\end
|
52
12.tex
Normal file
52
12.tex
Normal file
|
@ -0,0 +1,52 @@
|
|||
\magnification=1200
|
||||
\parindent=0pt
|
||||
|
||||
Problem 8.1 (c) on page 32.
|
||||
|
||||
$$c_n={4n+3\over7n-5}$$
|
||||
|
||||
1. Limit looks to be $c={4\over7}$, set up the relation:
|
||||
|
||||
$$\left|{4n+3\over7n-5}-{4\over7}\right|<\epsilon$$
|
||||
|
||||
2. Combine denominators to get:
|
||||
|
||||
$$\left|{7(4n+3)-4(7n-5)\over7(7n-5)}\right|<\epsilon$$
|
||||
|
||||
3. Multiply out and simplify to get:
|
||||
|
||||
$$\left|{28n+21-28n+35\over49n-35}\right|
|
||||
=\left|{41\over49n-35}\right|<\epsilon$$
|
||||
|
||||
4. Term is positive so drop absolute value:
|
||||
|
||||
$${41\over49n-35}<\epsilon$$
|
||||
|
||||
5. Multiply both sides by $(49n-35)/\epsilon$ to get:
|
||||
|
||||
$${41\over\epsilon}<49n-35$$
|
||||
|
||||
6. Add 35 to both sides and divide by 49 to get:
|
||||
|
||||
$${41\over49\epsilon}+{5\over7}<n$$
|
||||
|
||||
7. Set $N$ to $41/49\epsilon+5/7$. Then $N<n$ implies that
|
||||
|
||||
$${41\over49\epsilon}+{5\over7}<n$$
|
||||
|
||||
8. Subtract ${5\over7}$ from both sides to get:
|
||||
|
||||
$${41\over49\epsilon}<n-{5\over7}$$
|
||||
|
||||
9. Multiply both sides by $49\over41$ to get:
|
||||
|
||||
$${1\over\epsilon}<{49n-35\over41}$$
|
||||
|
||||
10. Mutiply both sides by inverses to get:
|
||||
|
||||
$${41\over49n-35}<\epsilon$$
|
||||
|
||||
11. This is the same as the result in step 4. We can work backwards from there
|
||||
to get the equation in step 1 so the limit is proved.
|
||||
|
||||
\end
|
52
13.tex
Normal file
52
13.tex
Normal file
|
@ -0,0 +1,52 @@
|
|||
\magnification=1200
|
||||
\parindent=0pt
|
||||
|
||||
Problem 8.2 (c) on page 32.
|
||||
|
||||
$$c_n={4n+3\over7n-5}$$
|
||||
|
||||
1. Limit looks to be $c={4\over7}$, set up the relation:
|
||||
|
||||
$$\left|{4n+3\over7n-5}-{4\over7}\right|<\epsilon$$
|
||||
|
||||
2. Combine denominators to get:
|
||||
|
||||
$$\left|{7(4n+3)-4(7n-5)\over7(7n-5)}\right|<\epsilon$$
|
||||
|
||||
3. Multiply out and simplify to get:
|
||||
|
||||
$$\left|{28n+21-28n+35\over49n-35}\right|
|
||||
=\left|{41\over49n-35}\right|<\epsilon$$
|
||||
|
||||
4. Term is positive so drop absolute value:
|
||||
|
||||
$${41\over49n-35}<\epsilon$$
|
||||
|
||||
5. Multiply both sides by $(49n-35)/\epsilon$ to get:
|
||||
|
||||
$${41\over\epsilon}<49n-35$$
|
||||
|
||||
6. Add 35 to both sides and divide by 49 to get:
|
||||
|
||||
$${41\over49\epsilon}+{5\over7}<n$$
|
||||
|
||||
7. Set $N$ to $41/49\epsilon+5/7$. Then $N<n$ implies that
|
||||
|
||||
$${41\over49\epsilon}+{5\over7}<n$$
|
||||
|
||||
8. Subtract ${5\over7}$ from both sides to get:
|
||||
|
||||
$${41\over49\epsilon}<n-{5\over7}$$
|
||||
|
||||
9. Multiply both sides by $49\over41$ to get:
|
||||
|
||||
$${1\over\epsilon}<{49n-35\over41}$$
|
||||
|
||||
10. Mutiply both sides by $41\epsilon/(49n-35)$ to get:
|
||||
|
||||
$${41\over49n-35}<\epsilon$$
|
||||
|
||||
11. This is the same as the result in step 4. We can work backwards from there
|
||||
to get the equation in step 1 so the limit is proved.
|
||||
|
||||
\end
|
102
14.tex
Normal file
102
14.tex
Normal file
|
@ -0,0 +1,102 @@
|
|||
\parindent=0pt
|
||||
|
||||
First, define two vector functions F and G.
|
||||
|
||||
\bigskip
|
||||
|
||||
{\tt\obeylines
|
||||
> F=(FX(),FY(),FZ())
|
||||
> G=(GX(),GY(),GZ())
|
||||
}
|
||||
|
||||
\bigskip
|
||||
|
||||
Now verify the following vector identities.
|
||||
|
||||
|
||||
$$\mathop{\rm div}(\mathop{\rm curl}F)=0\eqno1$$
|
||||
|
||||
{\tt\obeylines
|
||||
> div(curl(F))
|
||||
0
|
||||
}
|
||||
|
||||
$$\mathop{\rm curl}(\mathop{\rm grad}f)=0\eqno2$$
|
||||
|
||||
{\tt\obeylines
|
||||
> curl(grad(f()))
|
||||
(0,0,0)
|
||||
}
|
||||
|
||||
$$\mathop{\rm div}(\mathop{\rm grad}f)=\nabla^2f\eqno3$$
|
||||
|
||||
{\tt\obeylines
|
||||
> div(grad(f()))-laplacian(f())
|
||||
0
|
||||
}
|
||||
|
||||
$$\mathop{\rm curl}(\mathop{\rm curl}F)=\mathop{\rm grad}
|
||||
(\mathop{\rm div}F)-\nabla^2F\eqno4$$
|
||||
|
||||
{\tt\obeylines
|
||||
> curl(curl(F))-grad(div(F))+laplacian(F)
|
||||
(0,0,0)
|
||||
}
|
||||
|
||||
$$\mathop{\rm grad}(fg)=f\mathop{\rm grad}g+g\mathop{\rm grad}f\eqno5$$
|
||||
|
||||
{\tt\obeylines
|
||||
> grad(f()*g())-f()*grad(g())-g()*grad(f())
|
||||
(0,0,0)
|
||||
}
|
||||
|
||||
$$\mathop{\rm grad}(F\cdot G)=(G\cdot{\rm grad})F+(F\cdot{\rm grad})G
|
||||
+G\times\mathop{\rm curl}F+F\times\mathop{\rm curl}G\eqno6$$
|
||||
|
||||
{\tt\obeylines
|
||||
> grad(dot(F,G))-dot(grad(F),G)-dot(grad(G),F)-cross(G,curl(F))-cross(F,curl(G))
|
||||
(0,0,0)
|
||||
}
|
||||
|
||||
\bigskip
|
||||
|
||||
It turns out that the notation $(G\cdot{\rm grad})F$ actually means
|
||||
$({\rm grad}\,F)\cdot G$.
|
||||
Note: {\tt dot(grad(F),G)} is different from {\tt dot(G,grad(F))}! Why?
|
||||
Because {\tt grad(F)} is a square matrix, not a vector.
|
||||
Only the dot product of vectors is guaranteed to be commutative.
|
||||
|
||||
$$\mathop{\rm div}(fF)=f\mathop{\rm div}F+\mathop{\rm grad}f\cdot F\eqno7$$
|
||||
|
||||
{\tt\obeylines
|
||||
> div(f()*F)-f()*div(F)-dot(grad(f()),F)
|
||||
0
|
||||
}
|
||||
|
||||
$$\mathop{\rm div}(F\times G)=G\cdot\mathop{\rm curl}F-F\cdot\mathop{\rm curl}G\eqno8$$
|
||||
|
||||
{\tt\obeylines
|
||||
> div(cross(F,G))-dot(G,curl(F))+dot(F,curl(G))
|
||||
0
|
||||
}
|
||||
|
||||
$$\mathop{\rm curl}(fF)=f\mathop{\rm curl}F+\mathop{\rm grad}f\times F\eqno9$$
|
||||
|
||||
{\tt\obeylines
|
||||
> curl(f()*F)-f()*curl(F)-cross(grad(f()),F)
|
||||
(0,0,0)
|
||||
}
|
||||
|
||||
$$\mathop{\rm curl}(F\times G)
|
||||
=F\mathop{\rm div}G
|
||||
-G\mathop{\rm div}F
|
||||
+(G\cdot\mathop{\rm grad})F
|
||||
-(F\cdot\mathop{\rm grad})G
|
||||
\eqno10$$
|
||||
|
||||
{\tt\obeylines
|
||||
> curl(cross(F,G))-F*div(G)+G*div(F)-dot(grad(F),G)+dot(grad(G),F)
|
||||
(0,0,0)
|
||||
}
|
||||
|
||||
\end
|
277
15.tex
Normal file
277
15.tex
Normal file
|
@ -0,0 +1,277 @@
|
|||
\parindent=0pt
|
||||
|
||||
\beginsection Feynman
|
||||
|
||||
This is a problem from Feynman's ``Quantum Electrodynamics.''
|
||||
Show that $\nabla_\mu A_\mu=0$ implies that $k\cdot e=0$.
|
||||
The easiest way to do this is to write down all the components.
|
||||
|
||||
$$\nabla_\mu=(\partial/\partial t, -\partial/\partial x, -\partial/\partial y, -\partial/\partial z)$$
|
||||
|
||||
$$\nabla_\mu A_\mu=\nabla\cdot A={\partial A_t\over\partial t}+{\partial A_x\over\partial x}+{\partial A_y\over\partial y}+{\partial A_z\over\partial z}$$
|
||||
|
||||
$$A_t=e_t\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
$$A_x=e_x\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
$$A_y=e_y\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
$$A_z=e_z\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
$${\partial A_t\over\partial t}=(-ik_t)e_t\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
$${\partial A_x\over\partial x}=(+ik_x)e_x\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
$${\partial A_y\over\partial y}=(+ik_y)e_y\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
$${\partial A_z\over\partial z}=(+ik_z)e_z\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
$$\nabla_\mu A_\mu=-i(k\cdot e)\exp[-i(k_tt-k_xx-k_yy-k_zz)]$$
|
||||
|
||||
\beginsection Stefanovich
|
||||
|
||||
I stumbled across Stefanovich's web site and he has an interesting program
|
||||
for doing QED calculations.
|
||||
|
||||
Here is Stefanovich's ``V'' file (shown with line numbers):
|
||||
|
||||
{
|
||||
\tt
|
||||
{\it\ 01}\ \char49
|
||||
\
|
||||
\
|
||||
\char49
|
||||
\
|
||||
\
|
||||
\char48
|
||||
\
|
||||
\
|
||||
\char49
|
||||
\
|
||||
\
|
||||
\char45
|
||||
\char51
|
||||
\
|
||||
\
|
||||
\char50
|
||||
\
|
||||
\
|
||||
\char48
|
||||
\
|
||||
\char48
|
||||
\ \par
|
||||
{\it\ 02}\ \char120
|
||||
\ \par
|
||||
{\it\ 03}\ \char43
|
||||
\char91
|
||||
\char43
|
||||
\char79
|
||||
\char122
|
||||
\char40
|
||||
\char43
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\char93
|
||||
\ \par
|
||||
{\it\ 04}\ \char120
|
||||
\ \par
|
||||
{\it\ 05}\ \char43
|
||||
\char69
|
||||
\char105
|
||||
\char43
|
||||
\char91
|
||||
\char45
|
||||
\char79
|
||||
\char109
|
||||
\char40
|
||||
\char43
|
||||
\char112
|
||||
\char42
|
||||
\char43
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\char43
|
||||
\char79
|
||||
\char109
|
||||
\char40
|
||||
\char43
|
||||
\char112
|
||||
\char42
|
||||
\char41
|
||||
\char43
|
||||
\char79
|
||||
\char115
|
||||
\char40
|
||||
\char43
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\char93
|
||||
\char116
|
||||
\ \par
|
||||
{\it\ 06}\ \char120
|
||||
\ \par
|
||||
{\it\ 07}\ \char65
|
||||
\char94
|
||||
\char40
|
||||
\char43
|
||||
\char112
|
||||
\char42
|
||||
\char41
|
||||
\ \par
|
||||
{\it\ 08}\ \char49
|
||||
\
|
||||
\char48
|
||||
\ \par
|
||||
{\it\ 09}\ \char65
|
||||
\char95
|
||||
\char40
|
||||
\char43
|
||||
\char112
|
||||
\char42
|
||||
\char43
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\ \par
|
||||
{\it\ 10}\ \char50
|
||||
\
|
||||
\char48
|
||||
\ \par
|
||||
{\it\ 11}\ \char67
|
||||
\char94
|
||||
\char40
|
||||
\char43
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\ \par
|
||||
{\it\ 12}\ \char49
|
||||
\
|
||||
\char50
|
||||
\ \par
|
||||
{\it\ 13}\ \char120
|
||||
\ \par
|
||||
{\it\ 14}\ \char49
|
||||
\
|
||||
\
|
||||
\char49
|
||||
\
|
||||
\
|
||||
\char48
|
||||
\
|
||||
\
|
||||
\char49
|
||||
\
|
||||
\
|
||||
\char45
|
||||
\char51
|
||||
\
|
||||
\
|
||||
\char50
|
||||
\
|
||||
\
|
||||
\char48
|
||||
\
|
||||
\char48
|
||||
\ \par
|
||||
{\it\ 15}\ \char120
|
||||
\ \par
|
||||
{\it\ 16}\ \char43
|
||||
\char91
|
||||
\char43
|
||||
\char79
|
||||
\char122
|
||||
\char40
|
||||
\char43
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\char93
|
||||
\ \par
|
||||
{\it\ 17}\ \char120
|
||||
\ \par
|
||||
{\it\ 18}\ \char43
|
||||
\char69
|
||||
\char105
|
||||
\char43
|
||||
\char91
|
||||
\char45
|
||||
\char79
|
||||
\char109
|
||||
\char40
|
||||
\char43
|
||||
\char112
|
||||
\char42
|
||||
\char45
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\char43
|
||||
\char79
|
||||
\char109
|
||||
\char40
|
||||
\char43
|
||||
\char112
|
||||
\char42
|
||||
\char41
|
||||
\char45
|
||||
\char79
|
||||
\char115
|
||||
\char40
|
||||
\char43
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\char93
|
||||
\char116
|
||||
\ \par
|
||||
{\it\ 19}\ \char120
|
||||
\ \par
|
||||
{\it\ 20}\ \char65
|
||||
\char94
|
||||
\char40
|
||||
\char43
|
||||
\char112
|
||||
\char42
|
||||
\char41
|
||||
\ \par
|
||||
{\it\ 21}\ \char49
|
||||
\
|
||||
\char48
|
||||
\ \par
|
||||
{\it\ 22}\ \char65
|
||||
\char95
|
||||
\char40
|
||||
\char43
|
||||
\char112
|
||||
\char42
|
||||
\char45
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\ \par
|
||||
{\it\ 23}\ \char50
|
||||
\
|
||||
\char48
|
||||
\ \par
|
||||
{\it\ 24}\ \char67
|
||||
\char95
|
||||
\char40
|
||||
\char43
|
||||
\char107
|
||||
\char42
|
||||
\char41
|
||||
\ \par
|
||||
{\it\ 25}\ \char49
|
||||
\
|
||||
\char50
|
||||
\ \par
|
||||
{\it\ 26}\ \char120
|
||||
\ \par
|
||||
\end
|
||||
}
|
||||
|
||||
\end
|
21
16.tex
Normal file
21
16.tex
Normal file
|
@ -0,0 +1,21 @@
|
|||
From Math World, {\tt http://mathworld.wolfram.com/HilbertSpace.html}
|
||||
|
||||
\bigskip
|
||||
|
||||
A Hilbert space is a vector space $H$ with an inner product
|
||||
$\langle f,g\rangle$ such that the norm defined by
|
||||
$$|f|=\sqrt{\langle f,g\rangle}$$
|
||||
turns $H$ into a complete metric space. If the inner product does not so
|
||||
define a norm, it is instead known as an inner product space.
|
||||
|
||||
\bigskip
|
||||
|
||||
Examples of finite-dimensional Hilbert spaces include
|
||||
|
||||
1. The real numbers $R^n$ with $\langle v,u\rangle$ the vector dot product of
|
||||
$v$ and $u$.
|
||||
|
||||
2. The complex numbers $C^n$ with $\langle v,u\rangle$ the vector dot product
|
||||
of $v$ and the complex conjugate of $u$.
|
||||
|
||||
\end
|
243
17.tex
Normal file
243
17.tex
Normal file
|
@ -0,0 +1,243 @@
|
|||
\magnification=1200
|
||||
\parindent=0pt
|
||||
|
||||
\beginsection{December 24, 2002}
|
||||
|
||||
14.1(a) $\sum n^4/2^n$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={(n+1)^4/2^{n+1}\over n^4/2^n}
|
||||
={(n+1)^4\over2^{n+1}}\times{2^n\over n^4}
|
||||
={(n+1)^4\over2n^4}\rightarrow{1\over2}<1}$
|
||||
\medskip
|
||||
So by the ratio test $\sum n^4/2^n$ converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(b) $\sum2^n/n!$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{{a_{n+1}\over a_n}={2^{n+1}/(n+1)!\over 2^n/n!}
|
||||
={2^{n+1}\over(n+1)!}\times{n!\over2^n}={2\over n+1}<1}$
|
||||
\medskip
|
||||
So by the ratio test $\sum2^n/n!$ converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(c) $\sum n^2/3^n$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={(n+1)^2/3^{n+1}\over n^2/3^n}
|
||||
={(n+1)^2\over 3^{n+1}}\times{3^n\over n^2}
|
||||
={(n+1)^2\over3n^2}\rightarrow{1\over3}<1
|
||||
}$
|
||||
\medskip
|
||||
So by the ratio test $\sum n^2/3^n$ converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(d) $\sum n!/(n^4+3)$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={(n+1)!/((n+1)^4+3)\over n!/(n^4+3)}
|
||||
={(n+1)!\over((n+1)^4+3)}\times{n^4+3\over n!}
|
||||
\rightarrow n+1>1
|
||||
}$
|
||||
\medskip
|
||||
So by the ratio test $\sum n!/(n^4+3)$ diverges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(e) $\sum\cos^2 n/n^2$ Use the comparison test.
|
||||
Since $\sum1/n^2$ converges and
|
||||
$|\cos^2 n/n^2|\le1/n^2$ for all $n$, $\sum\cos^2 n/n^2$ must also converge.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(f) $\sum_{n=2}^\infty1/(\log n)$ Use the comparison test.
|
||||
Since $\sum(1/n)$ diverges and $1/(\log n)>1/n$ for all $n>1$,
|
||||
$\sum_{n=2}^\infty1/(\log n)$ must also diverge.
|
||||
|
||||
\beginsection{December 26, 2002}
|
||||
|
||||
Zeno's Paradox: The solution is that the infinite sum converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
Proof of the Root Test. Let $\alpha=\lim\sup|a_n|^{1/n}$.
|
||||
We can select an $\epsilon$ so that $\lim\sup|a_n|^{1/n}<\alpha+\epsilon$.
|
||||
Next we can move the exponent around and put $|a_n|=(\alpha+\epsilon)^n$.
|
||||
Now if $\alpha<1$ then we can choose a suitably small $\epsilon$ so that
|
||||
$\alpha+\epsilon<1$. Since the geometric series $\sum(\alpha+\epsilon)^n$
|
||||
converges, $\sum a_n$ must converge by the Comparison Test.
|
||||
So if $\alpha<1$ then $\sum a_n$ converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
Even simpler: If $\alpha<1$ then $\sum \alpha^n$ converges
|
||||
and so $\sum a_n$ converges by the Comparison Test.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.2(a) $\sum(n-1)/n^2$. Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={n\over(n+1)^2}\times{n^2\over n-1}
|
||||
={n^3\over n^3+n^2-n-1}<1?
|
||||
}$
|
||||
\medskip
|
||||
Not so sure. It gets closer and closer to 1 so is $\lim\sup=1$?
|
||||
If we consider $\sum(n-1)/n^2=\sum(1/n-1/n^2)$ it looks divergent.
|
||||
Is it fair to say that since
|
||||
\medskip
|
||||
$\displaystyle{\lim\sup{n^3+n^2-n-1\over n^3}=1}$ that
|
||||
$\displaystyle{\lim\sup{n^3\over n^3+n^2-n-1}=1}$ also?
|
||||
|
||||
\bigskip
|
||||
|
||||
14.2(b) $\sum(-1)^n$ The sum is 0 for even $n$ and $-1$ for odd $n$.
|
||||
So it does not converge but it is bounded.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.2(c) $\sum3n/n^3$ This is the same as $\sum3/n^2$ which converges.
|
||||
(Can't find the theorem that says if $\sum a_n$ converges then
|
||||
$r\sum a_n$ also converges.)
|
||||
|
||||
\bigskip
|
||||
|
||||
14.2(d) $\sum n^3/3^n$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={(n+1)^3\over3^{n+1}}\times{3^n\over n^3}
|
||||
\rightarrow{1\over3^n}<1
|
||||
}$ so it converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.2(e) $\sum n^2/n!$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={(n+1)^2\over(n+1)!}\times{n!\over n^2}
|
||||
\rightarrow{1\over n+1}<1}$ so it converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.2(f) $\sum1/n^n$ Converges by the Comparison test since $1/n^n<1/n^2$.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.2(g) $\sum n/2^n$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={n+1\over2^{n+1}}\times{2^n\over n}
|
||||
\rightarrow{1\over2}<1}$ so it converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.3(a) $\sum1/\sqrt{n!}$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={1\over\sqrt{(n+1)!}}\times{\sqrt{n!}\over1}
|
||||
={1\over\sqrt{n+1}\cdot\sqrt{n!}}\times{\sqrt{n!}\over1}
|
||||
={1\over\sqrt{n+1}}<1}$ so it converges.
|
||||
|
||||
\beginsection{December 27, 2002}
|
||||
|
||||
Question: $\sum1/n$ seems to satisfy the Cauchy criterion.
|
||||
For every $\epsilon$ there is an $n$ such that $1/n<\epsilon$.
|
||||
But $\sum1/n$ does not converge.
|
||||
What am I missing?
|
||||
Ok, I think I see the problem.
|
||||
The Cauchy criterion is
|
||||
$|\sum_{k=m}^n a_k|<\epsilon$ for {\it all} values of $n\ge m>N$.
|
||||
Consider the case where $m=N+1$ and $n=+\infty$.
|
||||
In this case we have to add up
|
||||
all the terms all the way out to infinity and have it come up less than
|
||||
$\epsilon$.
|
||||
|
||||
\bigskip
|
||||
|
||||
Question about
|
||||
$\displaystyle{\lim{n^3\over n^3+n^2-n-1}=1?}$
|
||||
Solution: Multiply through by $1/n^3$:
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
\lim{n^3\over n^3+n^2-n-1}
|
||||
=\lim{1\over1+{1\over n}-{1\over n^2}-{1\over n^3}}
|
||||
=\lim{1\over1+0+0+0}=1
|
||||
}$
|
||||
|
||||
\beginsection{December 30, 2002}
|
||||
|
||||
Page 89, example 1. Show that $f(x)=2x^2+1$ is continuous using the
|
||||
$\epsilon$-$\delta$ property.
|
||||
We want to show that $|f(x)-f(x_0)|<\epsilon$ when $|x-x_0|<\delta$.
|
||||
Start by evaluating $|f(x)-f(x_0)|$ as follows:
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
|f(x)-f(x_0)|=|2x^2+1-(2x_0^2+1)|=|2x^2-2x_0^2|=2|x-x0|\cdot|x+x_0|
|
||||
}$
|
||||
\medskip
|
||||
Ok, I get that, except for maybe the last step that distributes the absolute
|
||||
value function. The book says, ``We need to get a bound for $|x+x_0|$ that
|
||||
does not depend on $x$.'' Why?
|
||||
Well, I think basically it's to get rid of $x^2$, to have a relation that's
|
||||
linear in $x$.
|
||||
Ok, onwards. Consider the case of $\delta<1$ which seems pretty typical
|
||||
since $\delta$ is allowed to get infinitely small.
|
||||
So $\delta<1$ means that $|x-x_0|<1$.
|
||||
Now watch this. The book says this means that $|x|<|x_0|+1$.
|
||||
It's true and here is why.
|
||||
Suppose $|x|$ is already less than $|x_0|$.
|
||||
Then it is certainly less than $|x_0|+1$.
|
||||
Now suppose $|x|$ is greater than $|x_0|$.
|
||||
Then by $\delta<1$ the difference has to be less than 1.
|
||||
(I'm impressed by the creativity here. Or is this a common trick to use?)
|
||||
So now that we have $|x|<|x_0|+1$, then we can put
|
||||
$|x+x_0|\le|x|+|x_0|<2|x_0|+1$. Whew!
|
||||
(How? By the triangle inequality and then by adding $|x_0|$ to both sides
|
||||
of $|x|<|x_0|+1$.)
|
||||
Now that we have $|x+x_0|<2|x_0|+1$ we can put
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
|f(x)-f(x_0)|<2|x-x_0|(2|x_0|+1)
|
||||
}$
|
||||
\medskip
|
||||
with the caveat $\delta<1$.
|
||||
Now we want $2|x-x_0|(2|x_0|+1)<\epsilon$ which leads to
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
|x-x_0|<{\epsilon\over2(2|x_0|+1)}
|
||||
}$
|
||||
\medskip
|
||||
Since $|x-x_0|<\delta$ we can choose the following $\delta$:
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
\delta={\epsilon\over2(2|x_0|+1)}
|
||||
}$
|
||||
\medskip
|
||||
and since $\delta<1$ we have
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
\delta=\min\left\{1,{\epsilon\over2(2|x_0|+1)}\right\}
|
||||
}$
|
||||
\medskip
|
||||
This final relation shows that $|x-x_0|<\delta$ implies
|
||||
$|f(x)-f(x_0)|<\epsilon$, which is what we wanted in the first place.
|
||||
(Really? How?)
|
||||
|
||||
\beginsection{December 31, 2002}
|
||||
|
||||
From yesterday: $|x^2-x_0^2|=|x-x_0|\times|x+x_0|$. How?
|
||||
First, factor it: $x^2-x_0^2=(x-x_0)(x+x_0)$.
|
||||
Then apply the identity $|AB|=|A|\times|B|$.
|
||||
|
||||
\end
|
61
18.tex
Normal file
61
18.tex
Normal file
|
@ -0,0 +1,61 @@
|
|||
\magnification=1200
|
||||
\parindent=0pt
|
||||
|
||||
14.1(a) $\sum n^4/2^n$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={(n+1)^4/2^{n+1}\over n^4/2^n}
|
||||
={(n+1)^4\over2^{n+1}}\times{2^n\over n^4}
|
||||
={(n+1)^4\over2n^4}\rightarrow{1\over2}<1}$
|
||||
\medskip
|
||||
So by the ratio test $\sum n^4/2^n$ converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(b) $\sum2^n/n!$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{{a_{n+1}\over a_n}={2^{n+1}/(n+1)!\over 2^n/n!}
|
||||
={2^{n+1}\over(n+1)!}\times{n!\over2^n}={2\over n+1}<1}$
|
||||
\medskip
|
||||
So by the ratio test $\sum2^n/n!$ converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(c) $\sum n^2/3^n$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={(n+1)^2/3^{n+1}\over n^2/3^n}
|
||||
={(n+1)^2\over 3^{n+1}}\times{3^n\over n^2}
|
||||
={(n+1)^2\over3n^2}\rightarrow{1\over3}<1
|
||||
}$
|
||||
\medskip
|
||||
So by the ratio test $\sum n^2/3^n$ converges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(d) $\sum n!/(n^4+3)$ Try the ratio test.
|
||||
\medskip
|
||||
$\displaystyle{
|
||||
{a_{n+1}\over a_n}
|
||||
={(n+1)!/((n+1)^4+3)\over n!/(n^4+3)}
|
||||
={(n+1)!\over((n+1)^4+3)}\times{n^4+3\over n!}
|
||||
\rightarrow n+1>1
|
||||
}$
|
||||
\medskip
|
||||
So by the ratio test $\sum n!/(n^4+3)$ diverges.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(e) $\sum\cos^2 n/n^2$ Use the comparison test.
|
||||
Since $\sum1/n^2$ converges and
|
||||
$|\cos^2 n/n^2|\le1/n^2$ for all $n$, $\sum\cos^2 n/n^2$ must also converge.
|
||||
|
||||
\bigskip
|
||||
|
||||
14.1(f) $\sum_{n=2}^\infty1/(\log n)$ Use the comparison test.
|
||||
Since $\sum(1/n)$ diverges and $1/(\log n)>1/n$ for all $n>1$,
|
||||
$\sum_{n=2}^\infty1/(\log n)$ must also diverge.
|
||||
|
||||
\end
|
31
19.tex
Normal file
31
19.tex
Normal file
|
@ -0,0 +1,31 @@
|
|||
\magnification=1200
|
||||
\parindent=0pt
|
||||
|
||||
Veltman, p. 23.
|
||||
|
||||
\bigskip
|
||||
|
||||
$$a=\left(\matrix{0&1&0\cr0&0& \sqrt2\cr0&0&0}\right)\quad
|
||||
\tilde a=\left(\matrix{0&0&0\cr1&0&0\cr0&\sqrt2&0}\right)$$
|
||||
|
||||
\bigskip
|
||||
|
||||
Work out the products $a^2$, $\tilde a^2$, $\tilde aa$, $a\tilde a$, $\tilde aa-a\tilde a$, etc.
|
||||
|
||||
\bigskip
|
||||
|
||||
\tt\obeylines
|
||||
> a=((0,1,0),(0,sqrt(2),0),(0,0,0))
|
||||
> at=transpose(a)
|
||||
> dot(a,a)
|
||||
((0,0,2**(1/2)),(0,0,0),(0,0,0))
|
||||
> dot(at,at)
|
||||
((0,0,0),(0,0,0),(2**(1/2),0,0))
|
||||
> dot(at,a)
|
||||
((0,0,0),(0,1,0),(0,0,2))
|
||||
> dot(a,at)
|
||||
((1,0,0),(0,2,0),(0,0,0))
|
||||
> dot(at,a)-dot(a,at)
|
||||
((-1,0,0),(0,-1,0),(0,0,2))
|
||||
|
||||
\end
|
14
20.tex
Normal file
14
20.tex
Normal file
|
@ -0,0 +1,14 @@
|
|||
\noindent
|
||||
25. Show that the non-zero residue classes modulo $p$ form a group with
|
||||
respect to multiplication if and only if $p$ is prime.
|
||||
|
||||
\medskip
|
||||
As a counter-example, for $p=4$ we have
|
||||
$S=\{[1],[2],[3]\}$.
|
||||
The problem is that some products have residue 0.
|
||||
For example, $2\times2=4$ has residue zero which is not in $S$.
|
||||
What we need is $p$ with no factors so that we
|
||||
cannot generate a multiple of $p$ which has residue 0.
|
||||
So $p$ must be prime.
|
||||
|
||||
\end
|
14
21.tex
Normal file
14
21.tex
Normal file
|
@ -0,0 +1,14 @@
|
|||
\noindent
|
||||
1. A square acre measures approximately $208.71$ feet on each side.
|
||||
What is the dimension exactly?
|
||||
|
||||
\medskip
|
||||
640 acres is a square mile. One side of a square mile is 5280 feet.
|
||||
Now we consider how many acre plots can we line up on one side of
|
||||
a square mile.
|
||||
Since there are 640 acres total, there must be $\sqrt{640}$ on each side.
|
||||
Therefore one side of an acre must be $5280/\sqrt{640}$ feet
|
||||
which is equivalent to $5280/(8\sqrt{10})$ feet
|
||||
which is equivalent to $660/\sqrt{10}$ feet.
|
||||
|
||||
\end
|
30
22.tex
Normal file
30
22.tex
Normal file
|
@ -0,0 +1,30 @@
|
|||
\noindent
|
||||
2. From Quantum magazine, p. 18.
|
||||
Prove the following theorem (the ``horse'' theorem).
|
||||
If a function is defined on a circle
|
||||
and is continuous, there exist
|
||||
two diametrically opposite points
|
||||
on the circle where this function
|
||||
takes on equal values.
|
||||
|
||||
\medskip
|
||||
Let $v$ be a continuous function defined on a circle.
|
||||
$$v(\theta)$$
|
||||
Here are its endpoints.
|
||||
$$v(0)=v(2\pi)=A$$
|
||||
Now consider the following function $u$.
|
||||
$$u(\phi)=v(\phi+\pi)-v(\phi)$$
|
||||
Evaluate $u$ at zero and $\pi$.
|
||||
$$\eqalign{
|
||||
u(0)&=v(\pi)-v(0)=v(\pi)-A\cr
|
||||
u(\pi)&=v(2\pi)-v(\pi)=A-v(\pi)
|
||||
}$$
|
||||
We see that $u(0) = -u(\pi)$. The significance of this is that the function
|
||||
$u(\phi)$
|
||||
goes from positive to negative, so $u(\phi)=0$ must exist
|
||||
somewhere.
|
||||
Since $u(\phi)=0$ exists then by our definition of $u(\phi)$ we have
|
||||
$$v(\phi+\pi)=v(\phi)$$
|
||||
for some $\phi$.
|
||||
|
||||
\end
|
Loading…
Add table
Reference in a new issue