This commit is contained in:
George Weigt 2006-08-30 09:05:11 -07:00
parent a9b44850dd
commit 9dc4e0501a

39
94.tex
View file

@ -17,19 +17,19 @@ $S=\{(SS),(SDS),(SDD),(DSS),(DSD),(DDSS),(DDSD),(DDDS),(DDDD)\}$
\medskip
Map each event to a set of outcomes.
$A=\{(SS),(SDS),(SDD)\}$
First animal survives: $A=\{(SS),(SDS),(SDD)\}$
$B=\{(SS)\}$
Two animals survive: $B=\{(SS),(SDS),(DSS),(DDSS)\}$
$C=\{(DDDS),(DDDD)\}$
Third animal dies: $C=\{(DDDS),(DDDD)\}$
$D=\{(SS),(SDS),(DSS),(DDSS)\}$
At least two animals survive: $D=\{(SS),(SDS),(DSS),(DDSS)\}$
$$A\cap B=\{(SS)\}$$
$$A\cap B=\{(SS),(SDS)\}$$
$$A^\prime\cup C=\{(DSS),(DSD),(DDSS),(DDSD),(DDDS),(DDDD)\}$$
$$B\cup D=\{(SS)\}$$
$$B\cup D=\{(SS),(SDS),(DSS),(DDSS)\}$$
$$C\cap D=\{\}$$
@ -98,22 +98,17 @@ $$P\{4\}=P\{10\}={1\over12}$$
$$P\{5\}=P\{9\}={1\over9}$$
$$P\{6\}=P\{8\}={5\over36}$$
$$P\{7\}={1\over6}$$
Probability of winning ``the point'' is computed by only
considering rolls in which the outcome is the point itself or 7.
$$P\{6|(6\cup 7)\}=P\{8|(8\cup7)\}={P\{8\}\over P\{7\}+P\{8\}}={5/36\over1/6+5/36}=5/11$$
$$P\{5|(5\cup 7)\}=P\{9|(9\cup7)\}={P\{9\}\over P\{7\}+P\{9\}}={1/9\over1/6+1/9}=2/5$$
$$P\{4|(4\cup 7)\}=P\{10|(10\cup7)\}={P\{10\}\over P\{7\}+P\{10\}}={1/12\over1/6+1/12}=1/3$$
The probability of rolling point $n$ and then winning is
$$P\{win|n\}=P\{n\}P\{n|(n\cup7)\}=P\{n\}{P\{n\}\over P\{n\}+1/6}$$
Note that $(n\cup7)$ means that we only consider rolls of the
dice that result in $n$ or 7.
$$P\{win|6\}=P\{win|8\}=(5/36)(5/11)=25/396$$
$$P\{win|5\}=P\{win|9\}=(1/9)(2/5)=2/45$$
$$P\{win|4\}=P\{win|10\}=(1/12)(1/3)=1/36$$
Overall probability of winning:
$$\eqalign{
P\{win\}&=P\{7\}+P\{11\}
+2P\{8|(8\cup7)\}P\{8\}
+2P\{9|(9\cup7)\}P\{9\}
+2P\{10|(10\cup7)\}P\{10\}\cr
&={1\over6}+{1\over18}
+2\left({5\over11}\cdot{5\over36}\right)
+2\left({2\over5}\cdot{1\over9}\right)
+2\left({1\over3}\cdot{1\over12}\right)\cr
&={244\over495}=0.492929
}$$
$$
P\{win\}=P\{7\}+P\{11\}+\sum_n P\{win|n\}
={244\over495}=0.492929
$$
\end