add
This commit is contained in:
parent
79a4b8055b
commit
a480d2938c
1 changed files with 234 additions and 0 deletions
234
78.tex
Normal file
234
78.tex
Normal file
|
@ -0,0 +1,234 @@
|
|||
\parindent=0pt
|
||||
|
||||
Statistical Methods
|
||||
|
||||
\bigskip
|
||||
1a.\par
|
||||
$H_0$: Unemployment is 9\%.\par
|
||||
$H_1$: Unemployment varies significantly from 9\%.
|
||||
|
||||
\bigskip
|
||||
1b.\par
|
||||
$H_0$: $\mu_0=55.50$\par
|
||||
$H_1$: $\mu<\mu_0$
|
||||
|
||||
\bigskip
|
||||
1c. $H_0$: $\mu_0=45$, $H_1$: $\mu>\mu_0$.
|
||||
|
||||
\bigskip
|
||||
1d.
|
||||
Null hypothesis: 40\% of the population gets the flu.
|
||||
Alternative hypothesis: People who take vitamin C are less likely to
|
||||
get the flu.
|
||||
|
||||
\bigskip
|
||||
1e.
|
||||
Null hypothesis: A toothpaste manufacturer has 35\% of the
|
||||
market in Springfield.
|
||||
Alternative hypothesis:
|
||||
The toothpaste manufacturer has more than 35\% of the market in
|
||||
Springfield.
|
||||
|
||||
\bigskip
|
||||
1f.
|
||||
Null hypothesis:
|
||||
The average rate of return on corporate A-rated bonds is 8\%.
|
||||
Alternative hypothesis:
|
||||
The average rate of return on corporate A-rated bonds is less than 8\%.
|
||||
|
||||
\bigskip
|
||||
1g.
|
||||
Null hypothesis:
|
||||
The average number of items purchased is 14{.}56.
|
||||
Alternative hypothesis:
|
||||
The average number of items purchased differs significantly from 14{.}56.
|
||||
|
||||
\bigskip
|
||||
1h.
|
||||
Null hypothesis:
|
||||
The average increase in money supply is 5\%.
|
||||
Alternative hypothesis:
|
||||
The average increase in money supply is greater than 5\%.
|
||||
|
||||
\bigskip
|
||||
1i.
|
||||
Null hypothesis:
|
||||
Average delivery time is 65 days.
|
||||
Alternative hypothesis:
|
||||
Average delivery times is less than 65 days.
|
||||
|
||||
\bigskip
|
||||
1j.
|
||||
Null hypothesis:
|
||||
Bank customers live 2 miles away on average.
|
||||
Alternative hypothesis:
|
||||
Bank customers do not live 2 miles away on average.
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
2. Known population variance.
|
||||
$$H_0: \mu=\mu_0$$
|
||||
$$H_1: \mu>\mu_0$$
|
||||
$$\mu_0=15$$
|
||||
$$\sigma=1.5$$
|
||||
$$n=64$$
|
||||
$$\bar Y=16.4$$
|
||||
$$\alpha=0.025$$
|
||||
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=7.4667$$
|
||||
$$Z_\alpha=Z_{0.025}=1.96$$
|
||||
$$7.4667\in(1.96,+\infty)$$
|
||||
Reject $H_0$ at $0.025$ level of significance.
|
||||
There is sufficient evidence that the workers are slower.
|
||||
|
||||
\bigskip
|
||||
3. Known population variance.
|
||||
$$H_0: \mu=\mu_0$$
|
||||
$$H_1: \mu>\mu_0$$
|
||||
$$\mu_0=5.5$$
|
||||
$$\sigma=2.4$$
|
||||
$$n=64$$
|
||||
$$\bar Y=5.8$$
|
||||
$$\alpha=0.05$$
|
||||
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=1$$
|
||||
$$Z_\alpha=Z_{0.05}=1.645$$
|
||||
$$1\not\in(1.645,+\infty)$$
|
||||
Fail to reject $H_0$ at $0.05$ level of significance.
|
||||
There is insufficient evidence against the claim of $5.5$ miles.
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
4. Known population variance.
|
||||
$$H_0: \mu=\mu_0$$
|
||||
$$H_1: \mu>\mu_0$$
|
||||
$$\mu_0=1510$$
|
||||
$$\sigma=175$$
|
||||
$$n=81$$
|
||||
$$\bar Y=1560$$
|
||||
$$\alpha=0.1$$
|
||||
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=2.5714$$
|
||||
$$Z_\alpha=Z_{0.1}=1.282$$
|
||||
$$2.5714\in(1.282,+\infty)$$
|
||||
Reject $H_0$ at $0.1$ level of significance.
|
||||
There is sufficient evidence that the economist is correct.
|
||||
|
||||
\bigskip
|
||||
5. Known population variance.
|
||||
$$H_0: \mu=\mu_0$$
|
||||
$$H_1: \mu>\mu_0$$
|
||||
$$\mu_0=22500$$
|
||||
$$\sigma=1200$$
|
||||
$$n=36$$
|
||||
$$\bar Y=22900$$
|
||||
$$\alpha=0.01$$
|
||||
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=2$$
|
||||
$$Z_\alpha=Z_{0.01}=2.326$$
|
||||
$$2\not\in(2.326,+\infty)$$
|
||||
Fail to reject $H_0$ at $0.01$ level of significance.
|
||||
We cannot conclude that UIS Mathematical Sciences
|
||||
majors start at a higher salary.
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
6. Unknown population variance, normal distribution.
|
||||
$$H_0:\mu=\mu_0$$
|
||||
$$H_1:\mu<\mu_0$$
|
||||
$$\mu_0=5$$
|
||||
$$n=9$$
|
||||
$$\bar Y=5.5889$$
|
||||
$$S=0.7219$$
|
||||
$$\alpha=0.05$$
|
||||
$$t^*=\sqrt n(\bar Y-\mu_0)/S=2.4473$$
|
||||
$$t_{(n-1,\alpha)}=T_{(8,0.05)}=$$
|
||||
|
||||
\bigskip
|
||||
7. Unknown population variance, normal distribution.
|
||||
$$H_0:\mu=\mu_0$$
|
||||
$$H_1:\mu<\mu_0$$
|
||||
$$\mu_0=65$$
|
||||
$$n=16$$
|
||||
$$\bar Y=65.97$$
|
||||
$$S=4.106$$
|
||||
$$\alpha=0.01$$
|
||||
$$t^*=\sqrt n(\bar Y-\mu_0)/S=0.9483$$
|
||||
$$T_{(n-1,\alpha)}=t_{(15,0.01)}=2.603$$
|
||||
$$0.9483\not\in(-\infty,-2.603)$$
|
||||
Fail to reject $H_0$ at $0.01$ level of significance.
|
||||
The results support the supplier's claim.
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
8. Unknown population variance, normal distribution.
|
||||
$$H_0:\mu=\mu_0$$
|
||||
$$H_1:\mu<\mu_0$$
|
||||
$$\mu_0=68$$
|
||||
$$n=16$$
|
||||
$$\bar Y=65.25$$
|
||||
$$S=2.5$$
|
||||
$$\alpha=0.03$$
|
||||
$$t^*=\sqrt n(\bar Y-\mu_0)/S=$$
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
9. Hypothesis of population proportion.
|
||||
$$H_0:p=p_0$$
|
||||
$$H_1:p\ne p_0$$
|
||||
$$p_0=0.5$$
|
||||
$$n=225$$
|
||||
$$Y=130$$
|
||||
$$\alpha=0.05$$
|
||||
$$\hat p=Y/n=$$
|
||||
$$Z^*={\hat p - p_0\over\sqrt{p_0(1-p_0)/n}}=$$
|
||||
$$Z_{\alpha/2}=Z_{0.025}=$$
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
10. Known population variance.
|
||||
$$H_0:\mu=\mu_0$$
|
||||
$$H_1:\mu<\mu_0$$
|
||||
$$\mu_0=32$$
|
||||
$$\sigma=5$$
|
||||
$$n=100$$
|
||||
$$\bar Y=31.34$$
|
||||
$$\alpha=0.05$$
|
||||
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=$$
|
||||
$$Z_\alpha=Z_{0.05}=$$
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
11a. Unknown population variance, normal distribution.
|
||||
$$H_0:\mu=\mu_0$$
|
||||
$$H_1:\mu>\mu_0$$
|
||||
$$\mu_0=4$$
|
||||
$$n=16$$
|
||||
$$\bar Y=4.2$$
|
||||
$$S=0.8$$
|
||||
$$\alpha=0.1$$
|
||||
$$t^*=\sqrt n(\bar Y-\mu_0)/S=$$
|
||||
$$t_{(n-1,\alpha)}=t_{(15,0.1)}=$$
|
||||
|
||||
\bigskip
|
||||
11b.
|
||||
$$H_0:\sigma^2=\sigma_0^2$$
|
||||
$$H_1:\sigma^2<\sigma_0^2$$
|
||||
$$\sigma_0^2=0.64$$
|
||||
$${\chi^2}^*=(n-1)S^2/\sigma_0^2=$$
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
12. Variance unknown but equal, normal distribution.
|
||||
$$H_0:\mu_1-\mu_2=0$$
|
||||
$$H_1:\mu_1-\mu_2\ne0$$
|
||||
$$\bar X=$$
|
||||
$$S_X=$$
|
||||
$$\bar Y=$$
|
||||
$$S_Y=$$
|
||||
$$\alpha=0.05$$
|
||||
|
||||
\end
|
Loading…
Add table
Add a link
Reference in a new issue