This commit is contained in:
George Weigt 2006-03-16 08:47:41 -07:00
parent 79a4b8055b
commit a480d2938c

234
78.tex Normal file
View file

@ -0,0 +1,234 @@
\parindent=0pt
Statistical Methods
\bigskip
1a.\par
$H_0$: Unemployment is 9\%.\par
$H_1$: Unemployment varies significantly from 9\%.
\bigskip
1b.\par
$H_0$: $\mu_0=55.50$\par
$H_1$: $\mu<\mu_0$
\bigskip
1c. $H_0$: $\mu_0=45$, $H_1$: $\mu>\mu_0$.
\bigskip
1d.
Null hypothesis: 40\% of the population gets the flu.
Alternative hypothesis: People who take vitamin C are less likely to
get the flu.
\bigskip
1e.
Null hypothesis: A toothpaste manufacturer has 35\% of the
market in Springfield.
Alternative hypothesis:
The toothpaste manufacturer has more than 35\% of the market in
Springfield.
\bigskip
1f.
Null hypothesis:
The average rate of return on corporate A-rated bonds is 8\%.
Alternative hypothesis:
The average rate of return on corporate A-rated bonds is less than 8\%.
\bigskip
1g.
Null hypothesis:
The average number of items purchased is 14{.}56.
Alternative hypothesis:
The average number of items purchased differs significantly from 14{.}56.
\bigskip
1h.
Null hypothesis:
The average increase in money supply is 5\%.
Alternative hypothesis:
The average increase in money supply is greater than 5\%.
\bigskip
1i.
Null hypothesis:
Average delivery time is 65 days.
Alternative hypothesis:
Average delivery times is less than 65 days.
\bigskip
1j.
Null hypothesis:
Bank customers live 2 miles away on average.
Alternative hypothesis:
Bank customers do not live 2 miles away on average.
\vfill
\eject
2. Known population variance.
$$H_0: \mu=\mu_0$$
$$H_1: \mu>\mu_0$$
$$\mu_0=15$$
$$\sigma=1.5$$
$$n=64$$
$$\bar Y=16.4$$
$$\alpha=0.025$$
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=7.4667$$
$$Z_\alpha=Z_{0.025}=1.96$$
$$7.4667\in(1.96,+\infty)$$
Reject $H_0$ at $0.025$ level of significance.
There is sufficient evidence that the workers are slower.
\bigskip
3. Known population variance.
$$H_0: \mu=\mu_0$$
$$H_1: \mu>\mu_0$$
$$\mu_0=5.5$$
$$\sigma=2.4$$
$$n=64$$
$$\bar Y=5.8$$
$$\alpha=0.05$$
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=1$$
$$Z_\alpha=Z_{0.05}=1.645$$
$$1\not\in(1.645,+\infty)$$
Fail to reject $H_0$ at $0.05$ level of significance.
There is insufficient evidence against the claim of $5.5$ miles.
\vfill
\eject
4. Known population variance.
$$H_0: \mu=\mu_0$$
$$H_1: \mu>\mu_0$$
$$\mu_0=1510$$
$$\sigma=175$$
$$n=81$$
$$\bar Y=1560$$
$$\alpha=0.1$$
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=2.5714$$
$$Z_\alpha=Z_{0.1}=1.282$$
$$2.5714\in(1.282,+\infty)$$
Reject $H_0$ at $0.1$ level of significance.
There is sufficient evidence that the economist is correct.
\bigskip
5. Known population variance.
$$H_0: \mu=\mu_0$$
$$H_1: \mu>\mu_0$$
$$\mu_0=22500$$
$$\sigma=1200$$
$$n=36$$
$$\bar Y=22900$$
$$\alpha=0.01$$
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=2$$
$$Z_\alpha=Z_{0.01}=2.326$$
$$2\not\in(2.326,+\infty)$$
Fail to reject $H_0$ at $0.01$ level of significance.
We cannot conclude that UIS Mathematical Sciences
majors start at a higher salary.
\vfill
\eject
6. Unknown population variance, normal distribution.
$$H_0:\mu=\mu_0$$
$$H_1:\mu<\mu_0$$
$$\mu_0=5$$
$$n=9$$
$$\bar Y=5.5889$$
$$S=0.7219$$
$$\alpha=0.05$$
$$t^*=\sqrt n(\bar Y-\mu_0)/S=2.4473$$
$$t_{(n-1,\alpha)}=T_{(8,0.05)}=$$
\bigskip
7. Unknown population variance, normal distribution.
$$H_0:\mu=\mu_0$$
$$H_1:\mu<\mu_0$$
$$\mu_0=65$$
$$n=16$$
$$\bar Y=65.97$$
$$S=4.106$$
$$\alpha=0.01$$
$$t^*=\sqrt n(\bar Y-\mu_0)/S=0.9483$$
$$T_{(n-1,\alpha)}=t_{(15,0.01)}=2.603$$
$$0.9483\not\in(-\infty,-2.603)$$
Fail to reject $H_0$ at $0.01$ level of significance.
The results support the supplier's claim.
\vfill
\eject
8. Unknown population variance, normal distribution.
$$H_0:\mu=\mu_0$$
$$H_1:\mu<\mu_0$$
$$\mu_0=68$$
$$n=16$$
$$\bar Y=65.25$$
$$S=2.5$$
$$\alpha=0.03$$
$$t^*=\sqrt n(\bar Y-\mu_0)/S=$$
\vfill
\eject
9. Hypothesis of population proportion.
$$H_0:p=p_0$$
$$H_1:p\ne p_0$$
$$p_0=0.5$$
$$n=225$$
$$Y=130$$
$$\alpha=0.05$$
$$\hat p=Y/n=$$
$$Z^*={\hat p - p_0\over\sqrt{p_0(1-p_0)/n}}=$$
$$Z_{\alpha/2}=Z_{0.025}=$$
\vfill
\eject
10. Known population variance.
$$H_0:\mu=\mu_0$$
$$H_1:\mu<\mu_0$$
$$\mu_0=32$$
$$\sigma=5$$
$$n=100$$
$$\bar Y=31.34$$
$$\alpha=0.05$$
$$Z^*=\sqrt n(\bar Y-\mu_0)/\sigma=$$
$$Z_\alpha=Z_{0.05}=$$
\vfill
\eject
11a. Unknown population variance, normal distribution.
$$H_0:\mu=\mu_0$$
$$H_1:\mu>\mu_0$$
$$\mu_0=4$$
$$n=16$$
$$\bar Y=4.2$$
$$S=0.8$$
$$\alpha=0.1$$
$$t^*=\sqrt n(\bar Y-\mu_0)/S=$$
$$t_{(n-1,\alpha)}=t_{(15,0.1)}=$$
\bigskip
11b.
$$H_0:\sigma^2=\sigma_0^2$$
$$H_1:\sigma^2<\sigma_0^2$$
$$\sigma_0^2=0.64$$
$${\chi^2}^*=(n-1)S^2/\sigma_0^2=$$
\vfill
\eject
12. Variance unknown but equal, normal distribution.
$$H_0:\mu_1-\mu_2=0$$
$$H_1:\mu_1-\mu_2\ne0$$
$$\bar X=$$
$$S_X=$$
$$\bar Y=$$
$$S_Y=$$
$$\alpha=0.05$$
\end