*** empty log message ***
This commit is contained in:
parent
a0972e4b8e
commit
ddd4bbc888
4 changed files with 76 additions and 0 deletions
23
222.tex
Normal file
23
222.tex
Normal file
|
@ -0,0 +1,23 @@
|
|||
\parindent=0pt
|
||||
\nopagenumbers
|
||||
|
||||
18.6. Prove that $x=\cos x$ for some $x$ in $(0,\pi/2)$.
|
||||
|
||||
\bigskip
|
||||
We have $\cos(0)=1$ and $\cos(\pi/2)=0$.
|
||||
The problem is that the interval is open, not closed as required by IVT.
|
||||
However, since $\cos(0)\ne0$ and $\cos(\pi/2)\ne\pi/2$ we know that
|
||||
$\cos x=x$ does not occur at the endpoints.
|
||||
Therefore it is safe to use the closed interval $[0,\pi/2]$.
|
||||
%(Is this o.k. or b.s.?)
|
||||
Use the trick from Example 1: $f(x)=x-\cos x$.
|
||||
We have $f(0)=0-1=-1$ and $f(\pi/2)=\pi/2-0=\pi/2$ and
|
||||
therefore $f(0)<0<f(\pi/2)$.
|
||||
By IVT there exits an $x_0$ such that $f(x_0)=0$.
|
||||
Because $f(x_0)=x_0-\cos x_0=0$, we have a point $x_0$
|
||||
at which $x=\cos x$.
|
||||
We have already shown that $x\ne\cos x$ at either $0$ or $\pi/2$ so
|
||||
$x=\cos x$ must occur on the interval $(0,\pi/2)$.
|
||||
|
||||
\vfill
|
||||
\end
|
16
223.tex
Normal file
16
223.tex
Normal file
|
@ -0,0 +1,16 @@
|
|||
\parindent=0pt
|
||||
\nopagenumbers
|
||||
|
||||
18.7. Prove that $x2^x=1$ for some $x$ in $(0,1)$.
|
||||
|
||||
\bigskip
|
||||
|
||||
We define the function $f(x)=x2^x$.
|
||||
For this function we have $f(0)=0$ and $f(1)=2$.
|
||||
Since $f(0)<1<f(1)$, by IVT $f(x)=1$ must occur somewhere in the
|
||||
closed interval $[0,1]$.
|
||||
We have $f(0)\ne1$ and $f(1)\ne1$ so $x2^x=1$ must occur somewhere in the
|
||||
open interval $(0,1)$.
|
||||
|
||||
\vfill
|
||||
\end
|
17
224.tex
Normal file
17
224.tex
Normal file
|
@ -0,0 +1,17 @@
|
|||
\parindent=0pt
|
||||
\nopagenumbers
|
||||
|
||||
18.8. Suppose that $f$ is a real-valued continuous function in $R$ and that
|
||||
$f(a)f(b)<0$ for some $a,b\in R$.
|
||||
Prove that there exists $x$ between $a$ and $b$ such that $f(x)=0$.
|
||||
|
||||
\bigskip
|
||||
|
||||
From $f(a)f(b)<0$ we conclude that
|
||||
$f(a)$ and $f(b)$ have opposite signs and neither is zero.
|
||||
Therefore either $f(a)<0<f(b)$ or $f(b)<0<f(a)$.
|
||||
In both cases we have the existence of $f(x)=0$ and $x\ne a,b$ by
|
||||
the intermediate value theorem.
|
||||
|
||||
\vfill
|
||||
\end
|
20
ross.html
20
ross.html
|
@ -89,6 +89,26 @@ for at least one <i>x</i><sub>0</sub> in [<i>a</i>, <i>b</i>].
|
|||
18.5. (b) Show that Example 1 can be viewed as a special case of part (a).
|
||||
</a>
|
||||
|
||||
<p>
|
||||
<a href="222.pdf">
|
||||
18.6. Prove that <i>x</i> = cos <i>x</i> for some <i>x</i> in
|
||||
(0, <i>π</i> / 2).
|
||||
</a>
|
||||
|
||||
<p>
|
||||
<a href="223.pdf">
|
||||
18.7. Prove that <i>x</i>2<sup><i>x</i></sup> = 1 for some <i>x</i>
|
||||
in (0, 1).
|
||||
</a>
|
||||
|
||||
<p>
|
||||
<a href="224.pdf">
|
||||
18.8. Suppose that <i>f</i> is a real-valued continuous function on R
|
||||
and that <i>f</i>(<i>a</i>)<i>f</i>(<i>b</i>) < 0 for some
|
||||
<i>a</i>, <i>b</i> ∈ R. Prove that there exists <i>x</i> between
|
||||
<i>a</i> and <i>b</i> such that <i>f</i>(<i>x</i>) = 0.
|
||||
</a>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue