*** empty log message ***
This commit is contained in:
parent
0d80db9d70
commit
ef7d77a450
1 changed files with 18 additions and 15 deletions
33
man.tex
33
man.tex
|
@ -1,7 +1,7 @@
|
|||
\documentclass[12pt,openany]{report}
|
||||
\title{Eigenmath Manual}
|
||||
\author{George Weigt}
|
||||
\date{April 22, 2007}
|
||||
\date{April 26, 2007}
|
||||
\pagestyle{headings}
|
||||
\usepackage{graphicx}
|
||||
|
||||
|
@ -405,7 +405,7 @@ The adjunct of a matrix is related to the cofactors as follows.
|
|||
|
||||
\medskip
|
||||
\verb$C$
|
||||
$$\left(\matrix{d&-c\cr -b&a}\right)$$
|
||||
$$C=\left(\matrix{d&-c\cr -b&a}\right)$$
|
||||
|
||||
\medskip
|
||||
\verb$adj(A)-transpose(C)$
|
||||
|
@ -527,34 +527,37 @@ $$0$$
|
|||
\label{integral}
|
||||
|
||||
\noindent
|
||||
The function integral($f,x$) returns the integral of $f$ with respect to $x$.
|
||||
$integral(f,x)$ returns the integral of $f$ with respect to $x$.
|
||||
The $x$ can be omitted for expressions in $x$.
|
||||
A multi-integral can be obtained by extending the argument list.
|
||||
|
||||
\medskip
|
||||
{\tt integral(x{\char94}2)}
|
||||
|
||||
\verb$integral(x^2)$
|
||||
$${1\over3}x^3$$
|
||||
|
||||
{\tt integral(x{\char94}2,x,x)}
|
||||
\verb$integral(x*y,x,y)$
|
||||
$${1\over4}x^2y^2$$
|
||||
|
||||
$${1\over12}x^4$$
|
||||
\newpage
|
||||
|
||||
\noindent
|
||||
\includegraphics[scale=0.5]{semicircle.png}
|
||||
|
||||
\medskip
|
||||
\noindent
|
||||
The eval function can be used to compute definite integrals.
|
||||
The following example computes the integral of $x^2$
|
||||
over a half circle.
|
||||
A definite integral can be obtained with the help of $eval$.
|
||||
The following example computes the integral of $f=x^2$
|
||||
over the domain of a semicircle.
|
||||
For each $x$ along the abscissa, $y$ ranges from 0 to $\sqrt{1-x^2}$.
|
||||
|
||||
\medskip
|
||||
{\tt I=integral(x{\char94}2,y)}
|
||||
\verb$I=integral(x^2,y)$
|
||||
|
||||
{\tt I=eval(I,y,sqrt(1-x{\char94}2))-eval(I,y,0)}
|
||||
\verb$I=eval(I,y,sqrt(1-x^2))-eval(I,y,0)$
|
||||
|
||||
{\tt I=integral(I,x)}
|
||||
|
||||
{\tt eval(I,x,1)-eval(I,x,-1)}
|
||||
\verb$I=integral(I,x)$
|
||||
|
||||
\verb$eval(I,x,1)-eval(I,x,-1)$
|
||||
$${1\over8}\pi$$
|
||||
|
||||
\newpage
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue