eigenmath/5.tex
George Weigt 9d2f8951d3 add
2005-11-25 13:04:40 -07:00

89 lines
2.5 KiB
TeX

\nopagenumbers
\magnification=1200
\beginsection{3.1.1.tex}
$$\phi({\bf x},t)=\sum_{\bf k}
\left[
\overbrace{
a({\bf k})\exp(-i\omega({\bf k})t+{\bf k}\cdot{\bf x})
\over\sqrt{2V\omega({\bf k})}
}^A
+
\overbrace{
a^\dagger({\bf k})\exp(i\omega({\bf k})t-{\bf k}\cdot{\bf x})
\over\sqrt{2V\omega({\bf k})}
}^B
\right]
$$
$$\dot\phi({\bf x^\prime},t)=\sum_{\bf k^\prime}
\left[
\overbrace{
-i\omega({\bf k^\prime})a({\bf k^\prime})
\exp(-i\omega({\bf k^\prime})t+{\bf k^\prime}\cdot{\bf x^\prime})
\over\sqrt{2V\omega({\bf k^\prime})}
}^C
+
\overbrace{
i\omega({\bf k^\prime})a^\dagger({\bf k^\prime})
\exp(i\omega({\bf k^\prime})t-{\bf k^\prime}\cdot{\bf x^\prime})
\over\sqrt{2V\omega({\bf k^\prime})}
}^D
\right]
$$
$$\eqalignno{
\Delta=
-&
%{i\omega({\bf k^\prime})\over2V\sqrt{\omega({\bf k})\omega({\bf k^\prime})}}
a({\bf k})a({\bf k^\prime})
\exp(-i\omega({\bf k})t-i\omega({\bf k^\prime})
+{\bf k}\cdot{\bf x}+{\bf k^\prime}\cdot{\bf x^\prime})
&AC\cr
+&
%{i\omega({\bf k^\prime})\over2V\sqrt{\omega({\bf k})\omega({\bf k^\prime})}}
a({\bf k^\prime})a({\bf k})
\exp(-i\omega({\bf k})t-i\omega({\bf k^\prime})
+{\bf k}\cdot{\bf x}+{\bf k^\prime}\cdot{\bf x^\prime})
&-CA\cr
+&
%{i\omega({\bf k^\prime})\over2V\sqrt{\omega({\bf k})\omega({\bf k^\prime})}}
a({\bf k})a^\dagger({\bf k^\prime})
\exp(-i\omega({\bf k})t+i\omega({\bf k^\prime})
+{\bf k}\cdot{\bf x}-{\bf k^\prime}\cdot{\bf x^\prime})
&AD\cr
-&
%{i\omega({\bf k^\prime})\over2V\sqrt{\omega({\bf k})\omega({\bf k^\prime})}}
a^\dagger({\bf k^\prime})a({\bf k})
\exp(-i\omega({\bf k})t+i\omega({\bf k^\prime})
+{\bf k}\cdot{\bf x}-{\bf k^\prime}\cdot{\bf x^\prime})
&-DA\cr
-&
%{i\omega({\bf k^\prime})\over2V\sqrt{\omega({\bf k})\omega({\bf k^\prime})}}
a^\dagger({\bf k})a({\bf k^\prime})
\exp(i\omega({\bf k})t-i\omega({\bf k^\prime})
-{\bf k}\cdot{\bf x}+{\bf k^\prime}\cdot{\bf x^\prime})
&BC\cr
+&
%{i\omega({\bf k^\prime})\over2V\sqrt{\omega({\bf k})\omega({\bf k^\prime})}}
a({\bf k^\prime})a^\dagger({\bf k})
\exp(i\omega({\bf k})t-i\omega({\bf k^\prime})
-{\bf k}\cdot{\bf x}+{\bf k^\prime}\cdot{\bf x^\prime})
&-CB\cr
+&
%{i\omega({\bf k^\prime})\over2V\sqrt{\omega({\bf k})\omega({\bf k^\prime})}}
a^\dagger({\bf k})a^\dagger({\bf k^\prime})
\exp(i\omega({\bf k})t+i\omega({\bf k^\prime})
-{\bf k}\cdot{\bf x}-{\bf k^\prime}\cdot{\bf x^\prime})
&BD\cr
-&
%{i\omega({\bf k^\prime})\over2V\sqrt{\omega({\bf k})\omega({\bf k^\prime})}}
a^\dagger({\bf k^\prime})a^\dagger({\bf k})
\exp(i\omega({\bf k})t+i\omega({\bf k^\prime})
-{\bf k}\cdot{\bf x}-{\bf k^\prime}\cdot{\bf x^\prime})
&-DB\cr
}$$
\end