eigenmath/example3.tex
2007-07-01 10:18:28 -07:00

30 lines
621 B
TeX

\newpage
\section*{Example 3}
For total energy $E$, kinetic energy $K$ and potential energy $V$ we have
$$E=K+V$$
The corresponding formula for a quantum harmonic oscillator is
$$(2n+1)\psi=-{d^2\psi\over dx^2}+x^2\psi$$
where $n$ is an integer and represents the quantization of energy values.
The solution to the above equation is
$$\psi_n(x)=\exp(-x^2/2)H_n(x)$$
where $H_n(x)$ is the $n$th Hermite polynomial in $x$.
The following Eigenmath code checks $E=K+V$ for $n=7$.
\medskip
\verb$n=7$
\verb$psi=exp(-x^2/2)*hermite(x,n)$
\verb$E=(2*n+1)*psi$
\verb$K=-d(psi,x,x)$
\verb$V=x^2*psi$
\verb$E-K-V$
$$0$$