893 lines
13 KiB
C++
893 lines
13 KiB
C++
#include "stdafx.h"
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// Factor polynomial
|
|
//
|
|
// Input: tos-2 p(x)
|
|
//
|
|
// tos-1 x
|
|
//
|
|
// Output: Result on stack
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "defs.h"
|
|
|
|
#define POLY p1
|
|
#define X p2
|
|
#define Z p3
|
|
#define A p4
|
|
#define B p5
|
|
#define Q p6
|
|
#define RESULT p7
|
|
#define FACTOR p8
|
|
|
|
static void factorpoly_auto(void);
|
|
static void factorpoly2(void);
|
|
static void factorpoly3(void);
|
|
static void factorpoly4(void);
|
|
static void rationalize_coefficients(int);
|
|
static int get_factor(void);
|
|
static void evalpoly(void);
|
|
static void divpoly(void);
|
|
static void __lcm(void);
|
|
int isnegativeterm(U *);
|
|
|
|
static int expo;
|
|
static U **polycoeff;
|
|
|
|
void
|
|
factorpoly(void)
|
|
{
|
|
int i, n;
|
|
save();
|
|
p2 = pop();
|
|
p1 = pop();
|
|
if (p2 == nil) {
|
|
push(p1);
|
|
factorpoly_auto();
|
|
restore();
|
|
return;
|
|
}
|
|
if (p2->k == TENSOR) {
|
|
n = p2->u.tensor->nelem;
|
|
push(p1);
|
|
for (i = 0; i < n; i++) {
|
|
push(p2->u.tensor->elem[i]);
|
|
factorpoly2();
|
|
}
|
|
} else {
|
|
push(p1);
|
|
push(p2);
|
|
factorpoly2();
|
|
}
|
|
restore();
|
|
}
|
|
|
|
// scan to find vars
|
|
|
|
static void
|
|
factorpoly_auto(void)
|
|
{
|
|
int i, n;
|
|
save();
|
|
p1 = pop();
|
|
push(p1);
|
|
variables();
|
|
p2 = pop();
|
|
if (p2 == nil) {
|
|
push(p1);
|
|
restore();
|
|
return;
|
|
}
|
|
n = p2->u.tensor->nelem;
|
|
push(p1);
|
|
for (i = 0; i < n; i++) {
|
|
push(p2->u.tensor->elem[i]);
|
|
factorpoly2();
|
|
}
|
|
restore();
|
|
}
|
|
|
|
// condense first then rationalize
|
|
|
|
// would it be better the other way around?
|
|
|
|
static void
|
|
factorpoly2(void)
|
|
{
|
|
save();
|
|
p2 = pop();
|
|
condense();
|
|
p1 = pop();
|
|
if (car(p1) == symbol(MULTIPLY)) {
|
|
p1 = cdr(p1);
|
|
push(_one);
|
|
while (iscons(p1)) {
|
|
push(car(p1));
|
|
if (caar(p1) == symbol(ADD)) {
|
|
push(p2);
|
|
factorpoly3();
|
|
}
|
|
multiply_noexpand();
|
|
p1 = cdr(p1);
|
|
}
|
|
} else if (car(p1) == symbol(ADD)) {
|
|
push(p1);
|
|
push(p2);
|
|
factorpoly3();
|
|
} else
|
|
push(p1);
|
|
restore();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// Input: tos-2 sum expression (may be a polynomial)
|
|
//
|
|
// tos-1 free variable
|
|
//
|
|
// Output: expression on stack (may be factored)
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void
|
|
factorpoly3(void)
|
|
{
|
|
save();
|
|
|
|
p2 = pop();
|
|
p1 = pop();
|
|
|
|
if (ispoly(p1, p2)) {
|
|
push(p1);
|
|
push(p2);
|
|
factorpoly4();
|
|
restore();
|
|
return;
|
|
}
|
|
|
|
// try rationalizing
|
|
|
|
push(p1);
|
|
rationalize();
|
|
p1 = pop();
|
|
|
|
if (car(p1) == symbol(MULTIPLY)) {
|
|
p1 = cdr(p1);
|
|
push(_one);
|
|
while (iscons(p1)) {
|
|
push(car(p1));
|
|
if (ispoly(car(p1), p2)) {
|
|
push(p2);
|
|
factorpoly4();
|
|
}
|
|
multiply_noexpand();
|
|
p1 = cdr(p1);
|
|
}
|
|
} else if (ispoly(p1, p2)) {
|
|
push(p1);
|
|
push(p2);
|
|
factorpoly4();
|
|
} else
|
|
push(p1);
|
|
|
|
restore();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// Input: tos-2 true polynomial
|
|
//
|
|
// tos-1 free variable
|
|
//
|
|
// Output: factored polynomial on stack
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static void
|
|
factorpoly4(void)
|
|
{
|
|
int h, i;
|
|
|
|
save();
|
|
|
|
X = pop();
|
|
POLY = pop();
|
|
|
|
h = tos;
|
|
|
|
polycoeff = stack + tos;
|
|
|
|
push(POLY);
|
|
push(X);
|
|
expo = coeff() - 1;
|
|
|
|
rationalize_coefficients(h);
|
|
|
|
// for univariate polynomials we could do expo > 1
|
|
|
|
while (expo > 0) {
|
|
|
|
if (get_factor() == 0) {
|
|
if (verbosing)
|
|
printf("no factor found\n");
|
|
break;
|
|
}
|
|
|
|
push(A);
|
|
push(X);
|
|
multiply();
|
|
push(B);
|
|
add();
|
|
FACTOR = pop();
|
|
|
|
if (verbosing) {
|
|
printf("success\nFACTOR=");
|
|
print(FACTOR);
|
|
printf("\n");
|
|
}
|
|
|
|
// factor out negative sign (not req'd because A > 1)
|
|
#if 0
|
|
if (isnegativeterm(A)) {
|
|
push(FACTOR);
|
|
negate();
|
|
FACTOR = pop();
|
|
push(RESULT);
|
|
negate_noexpand();
|
|
RESULT = pop();
|
|
}
|
|
#endif
|
|
push(RESULT);
|
|
push(FACTOR);
|
|
multiply_noexpand();
|
|
RESULT = pop();
|
|
|
|
divpoly();
|
|
|
|
while (expo && iszero(polycoeff[expo]))
|
|
expo--;
|
|
}
|
|
|
|
// unfactored polynomial
|
|
|
|
push(_zero);
|
|
for (i = 0; i <= expo; i++) {
|
|
push(polycoeff[i]);
|
|
push(X);
|
|
push_integer(i);
|
|
power();
|
|
multiply();
|
|
add();
|
|
}
|
|
POLY = pop();
|
|
|
|
if (verbosing) {
|
|
printf("POLY=");
|
|
print(POLY);
|
|
printf("\n");
|
|
}
|
|
|
|
// factor out negative sign
|
|
|
|
if (expo > 0 && isnegativeterm(polycoeff[expo])) {
|
|
push(POLY);
|
|
negate();
|
|
POLY = pop();
|
|
push(RESULT);
|
|
negate_noexpand();
|
|
RESULT = pop();
|
|
}
|
|
|
|
push(RESULT);
|
|
push(POLY);
|
|
multiply_noexpand();
|
|
RESULT = pop();
|
|
|
|
if (verbosing) {
|
|
printf("RESULT=");
|
|
print(RESULT);
|
|
printf("\n");
|
|
}
|
|
|
|
stack[h] = RESULT;
|
|
|
|
tos = h + 1;
|
|
|
|
restore();
|
|
}
|
|
|
|
static void
|
|
rationalize_coefficients(int h)
|
|
{
|
|
int i;
|
|
if (verbosing)
|
|
printf("rationalizing coefficients\n");
|
|
RESULT = _one;
|
|
for (i = h; i < tos; i++) {
|
|
if (isnum(stack[i])) {
|
|
push(stack[i]);
|
|
denominator();
|
|
push(RESULT);
|
|
__lcm();
|
|
RESULT = pop();
|
|
} else if (car(stack[i]) == symbol(MULTIPLY) && isnum(cadr(stack[i]))) {
|
|
push(cadr(stack[i]));
|
|
denominator();
|
|
push(RESULT);
|
|
__lcm();
|
|
RESULT = pop();
|
|
}
|
|
}
|
|
for (i = h; i < tos; i++) {
|
|
if (isnum(stack[i])) {
|
|
push(stack[i]);
|
|
push(RESULT);
|
|
multiply();
|
|
stack[i] = pop();
|
|
} else if (car(stack[i]) == symbol(MULTIPLY) && isnum(cadr(stack[i]))) {
|
|
push(stack[i]);
|
|
push(RESULT);
|
|
multiply();
|
|
stack[i] = pop();
|
|
}
|
|
}
|
|
push(RESULT);
|
|
inverse();
|
|
RESULT = pop();
|
|
if (verbosing) {
|
|
printf("RESULT=");
|
|
print(RESULT);
|
|
}
|
|
}
|
|
|
|
static int
|
|
get_factor(void)
|
|
{
|
|
int i, j, h;
|
|
int a0, an, na0, nan;
|
|
|
|
if (verbosing) {
|
|
push(_zero);
|
|
for (i = 0; i <= expo; i++) {
|
|
push(polycoeff[i]);
|
|
push(X);
|
|
push_integer(i);
|
|
power();
|
|
multiply();
|
|
add();
|
|
}
|
|
POLY = pop();
|
|
printf("POLY=");
|
|
print(POLY);
|
|
printf("\n");
|
|
}
|
|
|
|
h = tos;
|
|
|
|
an = tos;
|
|
push(polycoeff[expo]);
|
|
|
|
divisors_onstack();
|
|
|
|
nan = tos - an;
|
|
|
|
a0 = tos;
|
|
push(polycoeff[0]);
|
|
divisors_onstack();
|
|
na0 = tos - a0;
|
|
|
|
if (verbosing) {
|
|
printf("divisors of base term");
|
|
for (i = 0; i < na0; i++) {
|
|
printf(", ");
|
|
print(stack[a0 + i]);
|
|
}
|
|
printf("\n");
|
|
printf("divisors of leading term");
|
|
for (i = 0; i < nan; i++) {
|
|
printf(", ");
|
|
print(stack[an + i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
// try roots
|
|
|
|
for (i = 0; i < nan; i++) {
|
|
for (j = 0; j < na0; j++) {
|
|
|
|
A = stack[an + i];
|
|
B = stack[a0 + j];
|
|
|
|
push(B);
|
|
push(A);
|
|
divide();
|
|
negate();
|
|
Z = pop();
|
|
|
|
evalpoly();
|
|
|
|
if (verbosing) {
|
|
printf("try A=");
|
|
print(A);
|
|
printf(", B=");
|
|
print(B);
|
|
printf(", root ");
|
|
print(X);
|
|
printf("=-B/A=");
|
|
print(Z);
|
|
printf(", POLY(");
|
|
print(Z);
|
|
printf(")=");
|
|
print(Q);
|
|
printf("\n");
|
|
}
|
|
|
|
if (iszero(Q)) {
|
|
tos = h;
|
|
return 1;
|
|
}
|
|
|
|
push(B);
|
|
negate();
|
|
B = pop();
|
|
|
|
push(Z);
|
|
negate();
|
|
Z = pop();
|
|
|
|
evalpoly();
|
|
|
|
if (verbosing) {
|
|
printf("try A=");
|
|
print(A);
|
|
printf(", B=");
|
|
print(B);
|
|
printf(", root ");
|
|
print(X);
|
|
printf("=-B/A=");
|
|
print(Z);
|
|
printf(", POLY(");
|
|
print(Z);
|
|
printf(")=");
|
|
print(Q);
|
|
printf("\n");
|
|
}
|
|
|
|
if (iszero(Q)) {
|
|
tos = h;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
tos = h;
|
|
|
|
return 0;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// Divide a polynomial by Ax+B
|
|
//
|
|
// Input: polycoeff Dividend coefficients
|
|
//
|
|
// expo Degree of dividend
|
|
//
|
|
// A As above
|
|
//
|
|
// B As above
|
|
//
|
|
// Output: polycoeff Contains quotient coefficients
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static void
|
|
divpoly(void)
|
|
{
|
|
int i;
|
|
Q = _zero;
|
|
for (i = expo; i > 0; i--) {
|
|
push(polycoeff[i]);
|
|
polycoeff[i] = Q;
|
|
push(A);
|
|
divide();
|
|
Q = pop();
|
|
push(polycoeff[i - 1]);
|
|
push(Q);
|
|
push(B);
|
|
multiply();
|
|
subtract();
|
|
polycoeff[i - 1] = pop();
|
|
}
|
|
polycoeff[0] = Q;
|
|
}
|
|
|
|
static void
|
|
evalpoly(void)
|
|
{
|
|
int i;
|
|
push(_zero);
|
|
for (i = expo; i >= 0; i--) {
|
|
push(Z);
|
|
multiply();
|
|
push(polycoeff[i]);
|
|
add();
|
|
}
|
|
Q = pop();
|
|
}
|
|
|
|
static char *s[] = {
|
|
|
|
"factor((x+1)*(x+2)*(x+3),x)",
|
|
"(1+x)*(2+x)*(3+x)",
|
|
|
|
"factor((x+a)*(x^2+x+1),x)",
|
|
"(1+x+x^2)*(a+x)",
|
|
|
|
"factor(x*(x+1)*(x+2),x)",
|
|
"x*(1+x)*(2+x)",
|
|
|
|
"factor((x+1)*(x+2)*(y+3)*(y+4),x,y)",
|
|
"(1+x)*(2+x)*(3+y)*(4+y)",
|
|
|
|
"factor((x+1)*(x+2)*(y+3)*(y+4),(x,y))",
|
|
"(1+x)*(2+x)*(3+y)*(4+y)",
|
|
|
|
"factor((x+1)*(x+2)*(y+3)*(y+4))",
|
|
"(1+x)*(2+x)*(3+y)*(4+y)",
|
|
|
|
"factor((-2*x+3)*(x+4),x)",
|
|
"-(-3+2*x)*(4+x)",
|
|
|
|
"(-2*x+3)*(x+4)+(-3+2*x)*(4+x)",
|
|
"0",
|
|
|
|
// make sure sign of remaining poly is factored
|
|
|
|
"factor((x+1)*(-x^2+x+1),x)",
|
|
"-(-1-x+x^2)*(1+x)",
|
|
|
|
// sign handling
|
|
|
|
//++++++
|
|
|
|
"factor((x+1/2)*(+x+1/3)*(+x+1/4),x)",
|
|
"1/24*(1+2*x)*(1+3*x)*(1+4*x)",
|
|
|
|
"(x+1/2)*(+x+1/3)*(+x+1/4)-1/24*(1+2*x)*(1+3*x)*(1+4*x)",
|
|
"0",
|
|
|
|
//+++++-
|
|
|
|
"factor((x+1/2)*(+x+1/3)*(+x-1/4),x)",
|
|
"1/24*(-1+4*x)*(1+2*x)*(1+3*x)",
|
|
|
|
"(x+1/2)*(+x+1/3)*(+x-1/4)-1/24*(-1+4*x)*(1+2*x)*(1+3*x)",
|
|
"0",
|
|
|
|
//++++-+
|
|
|
|
"factor((x+1/2)*(+x+1/3)*(-x+1/4),x)",
|
|
"-1/24*(-1+4*x)*(1+2*x)*(1+3*x)",
|
|
|
|
"(x+1/2)*(+x+1/3)*(-x+1/4)+1/24*(-1+4*x)*(1+2*x)*(1+3*x)",
|
|
"0",
|
|
|
|
//++++--
|
|
|
|
"factor((x+1/2)*(+x+1/3)*(-x-1/4),x)",
|
|
"-1/24*(1+2*x)*(1+3*x)*(1+4*x)",
|
|
|
|
"(x+1/2)*(+x+1/3)*(-x-1/4)+1/24*(1+2*x)*(1+3*x)*(1+4*x)",
|
|
"0",
|
|
|
|
//+++-++
|
|
|
|
"factor((x+1/2)*(+x-1/3)*(+x+1/4),x)",
|
|
"1/24*(-1+3*x)*(1+2*x)*(1+4*x)",
|
|
|
|
"(x+1/2)*(+x-1/3)*(+x+1/4)-1/24*(-1+3*x)*(1+2*x)*(1+4*x)",
|
|
"0",
|
|
|
|
//+++-+-
|
|
|
|
"factor((x+1/2)*(+x-1/3)*(+x-1/4),x)",
|
|
"1/24*(-1+3*x)*(-1+4*x)*(1+2*x)",
|
|
|
|
"(x+1/2)*(+x-1/3)*(+x-1/4)-1/24*(-1+3*x)*(-1+4*x)*(1+2*x)",
|
|
"0",
|
|
|
|
//+++--+
|
|
|
|
"factor((x+1/2)*(+x-1/3)*(-x+1/4),x)",
|
|
"-1/24*(-1+3*x)*(-1+4*x)*(1+2*x)",
|
|
|
|
"(x+1/2)*(+x-1/3)*(-x+1/4)+1/24*(-1+3*x)*(-1+4*x)*(1+2*x)",
|
|
"0",
|
|
|
|
//+++---
|
|
|
|
"factor((x+1/2)*(+x-1/3)*(-x-1/4),x)",
|
|
"-1/24*(-1+3*x)*(1+2*x)*(1+4*x)",
|
|
|
|
"(x+1/2)*(+x-1/3)*(-x-1/4)+1/24*(-1+3*x)*(1+2*x)*(1+4*x)",
|
|
"0",
|
|
|
|
//++-+++
|
|
|
|
"factor((x+1/2)*(-x+1/3)*(+x+1/4),x)",
|
|
"-1/24*(-1+3*x)*(1+2*x)*(1+4*x)",
|
|
|
|
"(x+1/2)*(-x+1/3)*(+x+1/4)+1/24*(-1+3*x)*(1+2*x)*(1+4*x)",
|
|
"0",
|
|
|
|
//++-++-
|
|
|
|
"factor((x+1/2)*(-x+1/3)*(+x-1/4),x)",
|
|
"-1/24*(-1+3*x)*(-1+4*x)*(1+2*x)",
|
|
|
|
"(x+1/2)*(-x+1/3)*(+x-1/4)+1/24*(-1+3*x)*(-1+4*x)*(1+2*x)",
|
|
"0",
|
|
|
|
//++-+-+
|
|
|
|
"factor((x+1/2)*(-x+1/3)*(-x+1/4),x)",
|
|
"1/24*(-1+3*x)*(-1+4*x)*(1+2*x)",
|
|
|
|
"(x+1/2)*(-x+1/3)*(-x+1/4)-1/24*(-1+3*x)*(-1+4*x)*(1+2*x)",
|
|
"0",
|
|
|
|
//++-+--
|
|
|
|
"factor((x+1/2)*(-x+1/3)*(-x-1/4),x)",
|
|
"1/24*(-1+3*x)*(1+2*x)*(1+4*x)",
|
|
|
|
"(x+1/2)*(-x+1/3)*(-x-1/4)-1/24*(-1+3*x)*(1+2*x)*(1+4*x)",
|
|
"0",
|
|
|
|
//++--++
|
|
|
|
"factor((x+1/2)*(-x-1/3)*(+x+1/4),x)",
|
|
"-1/24*(1+2*x)*(1+3*x)*(1+4*x)",
|
|
|
|
"(x+1/2)*(-x-1/3)*(+x+1/4)+1/24*(1+2*x)*(1+3*x)*(1+4*x)",
|
|
"0",
|
|
|
|
//++--+-
|
|
|
|
"factor((x+1/2)*(-x-1/3)*(+x-1/4),x)",
|
|
"-1/24*(-1+4*x)*(1+2*x)*(1+3*x)",
|
|
|
|
"(x+1/2)*(-x-1/3)*(+x-1/4)+1/24*(-1+4*x)*(1+2*x)*(1+3*x)",
|
|
"0",
|
|
|
|
//++---+
|
|
|
|
"factor((x+1/2)*(-x-1/3)*(-x+1/4),x)",
|
|
"1/24*(-1+4*x)*(1+2*x)*(1+3*x)",
|
|
|
|
"(x+1/2)*(-x-1/3)*(-x+1/4)-1/24*(-1+4*x)*(1+2*x)*(1+3*x)",
|
|
"0",
|
|
|
|
//++----
|
|
|
|
"factor((x+1/2)*(-x-1/3)*(-x-1/4),x)",
|
|
"1/24*(1+2*x)*(1+3*x)*(1+4*x)",
|
|
|
|
"(x+1/2)*(-x-1/3)*(-x-1/4)-1/24*(1+2*x)*(1+3*x)*(1+4*x)",
|
|
"0",
|
|
|
|
//++++++
|
|
|
|
"factor((+x+a)*(+x+b)*(+x+c),x)",
|
|
"(a+x)*(b+x)*(c+x)",
|
|
|
|
"(a+x)*(b+x)*(c+x)-(a+x)*(b+x)*(c+x)",
|
|
"0",
|
|
|
|
//+++++-
|
|
|
|
"factor((+x+a)*(+x+b)*(+x-c),x)",
|
|
"(a+x)*(b+x)*(-c+x)",
|
|
|
|
"(+x+a)*(+x+b)*(+x-c)-(a+x)*(b+x)*(-c+x)",
|
|
"0",
|
|
|
|
//++++-+
|
|
|
|
"factor((+x+a)*(+x+b)*(-x+c),x)",
|
|
"-(a+x)*(b+x)*(-c+x)",
|
|
|
|
"(+x+a)*(+x+b)*(-x+c)+(a+x)*(b+x)*(-c+x)",
|
|
"0",
|
|
|
|
//++++--
|
|
|
|
"factor((+x+a)*(+x+b)*(-x-c),x)",
|
|
"-(a+x)*(b+x)*(c+x)",
|
|
|
|
"(+x+a)*(+x+b)*(-x-c)+(a+x)*(b+x)*(c+x)",
|
|
"0",
|
|
|
|
//++++
|
|
|
|
"factor((+a*x+b)*(+c*x+d),x)",
|
|
"(b+a*x)*(d+c*x)",
|
|
|
|
"(+a*x+b)*(+c*x+d)-(b+a*x)*(d+c*x)",
|
|
"0",
|
|
|
|
//+++-
|
|
|
|
"factor((+a*x+b)*(+c*x-d),x)",
|
|
"(b+a*x)*(-d+c*x)",
|
|
|
|
"(+a*x+b)*(+c*x-d)-(b+a*x)*(-d+c*x)",
|
|
"0",
|
|
|
|
//++-+
|
|
|
|
"factor((+a*x+b)*(-c*x+d),x)",
|
|
"-(b+a*x)*(-d+c*x)",
|
|
|
|
"(+a*x+b)*(-c*x+d)+(b+a*x)*(-d+c*x)",
|
|
"0",
|
|
|
|
//++--
|
|
|
|
"factor((+a*x+b)*(-c*x-d),x)",
|
|
"-(b+a*x)*(d+c*x)",
|
|
|
|
"(+a*x+b)*(-c*x-d)+(b+a*x)*(d+c*x)",
|
|
"0",
|
|
|
|
//+-++
|
|
|
|
"factor((+a*x-b)*(+c*x+d),x)",
|
|
"(d+c*x)*(-b+a*x)",
|
|
|
|
"(+a*x-b)*(+c*x+d)-(d+c*x)*(-b+a*x)",
|
|
"0",
|
|
|
|
//+-+-
|
|
|
|
"factor((+a*x-b)*(+c*x-d),x)",
|
|
"(-b+a*x)*(-d+c*x)",
|
|
|
|
"(+a*x-b)*(+c*x-d)-(-b+a*x)*(-d+c*x)",
|
|
"0",
|
|
|
|
//+--+
|
|
|
|
"factor((+a*x-b)*(-c*x+d),x)",
|
|
"-(-b+a*x)*(-d+c*x)",
|
|
|
|
"(+a*x-b)*(-c*x+d)+(-b+a*x)*(-d+c*x)",
|
|
"0",
|
|
|
|
//+---
|
|
|
|
"factor((+a*x-b)*(-c*x-d),x)",
|
|
"-(d+c*x)*(-b+a*x)",
|
|
|
|
"(+a*x-b)*(-c*x-d)+(d+c*x)*(-b+a*x)",
|
|
"0",
|
|
|
|
//-+++
|
|
|
|
"factor((-a*x+b)*(+c*x+d),x)",
|
|
"-(d+c*x)*(-b+a*x)",
|
|
|
|
"(-a*x+b)*(+c*x+d)+(d+c*x)*(-b+a*x)",
|
|
"0",
|
|
|
|
//-++-
|
|
|
|
"factor((-a*x+b)*(+c*x-d),x)",
|
|
"-(-b+a*x)*(-d+c*x)",
|
|
|
|
"(-a*x+b)*(+c*x-d)+(-b+a*x)*(-d+c*x)",
|
|
"0",
|
|
|
|
//-+-+
|
|
|
|
"factor((-a*x+b)*(-c*x+d),x)",
|
|
"(-b+a*x)*(-d+c*x)",
|
|
|
|
"(-a*x+b)*(-c*x+d)-(-b+a*x)*(-d+c*x)",
|
|
"0",
|
|
|
|
//-+--
|
|
|
|
"factor((-a*x+b)*(-c*x-d),x)",
|
|
"(d+c*x)*(-b+a*x)",
|
|
|
|
"(-a*x+b)*(-c*x-d)-(d+c*x)*(-b+a*x)",
|
|
"0",
|
|
|
|
//--++
|
|
|
|
"factor((-a*x-b)*(+c*x+d),x)",
|
|
"-(b+a*x)*(d+c*x)",
|
|
|
|
"(-a*x-b)*(+c*x+d)+(b+a*x)*(d+c*x)",
|
|
"0",
|
|
|
|
//--+-
|
|
|
|
"factor((-a*x-b)*(+c*x-d),x)",
|
|
"-(b+a*x)*(-d+c*x)",
|
|
|
|
"(-a*x-b)*(+c*x-d)+(b+a*x)*(-d+c*x)",
|
|
"0",
|
|
|
|
//---+
|
|
|
|
"factor((-a*x-b)*(-c*x+d),x)",
|
|
"(b+a*x)*(-d+c*x)",
|
|
|
|
"(-a*x-b)*(-c*x+d)-(b+a*x)*(-d+c*x)",
|
|
"0",
|
|
|
|
//----
|
|
|
|
"factor((-a*x-b)*(-c*x-d),x)",
|
|
"(b+a*x)*(d+c*x)",
|
|
|
|
"(-a*x-b)*(-c*x-d)-(b+a*x)*(d+c*x)",
|
|
"0",
|
|
|
|
// this used to cause divide by zero
|
|
|
|
// fixed by calling ispoly before calling coeff
|
|
|
|
"factor(1/x+1)",
|
|
"(1+x)/x",
|
|
|
|
// see if poly gets rationalized
|
|
|
|
"(x+1)(x+2)(x+3)/x^3",
|
|
"1+6/(x^3)+11/(x^2)+6/x",
|
|
|
|
"factor(last)",
|
|
"(1+x)*(2+x)*(3+x)/(x^3)",
|
|
|
|
// this used to fail
|
|
|
|
"factor(x,x)",
|
|
"x",
|
|
|
|
"factor(x^2,x)",
|
|
"x^2",
|
|
|
|
"factor(x^3,x)",
|
|
"x^3",
|
|
};
|
|
|
|
void
|
|
test_factorpoly(void)
|
|
{
|
|
test(__FILE__, s, sizeof s / sizeof (char *));
|
|
}
|
|
|
|
static void
|
|
__lcm(void)
|
|
{
|
|
save();
|
|
p2 = pop();
|
|
p1 = pop();
|
|
push(p1);
|
|
push(p2);
|
|
multiply();
|
|
push(p1);
|
|
push(p2);
|
|
gcd();
|
|
divide();
|
|
absval();
|
|
restore();
|
|
}
|