274 lines
4.2 KiB
C++
274 lines
4.2 KiB
C++
// Rational power function
|
|
|
|
#include "stdafx.h"
|
|
#include "defs.h"
|
|
|
|
static void qpowf(void);
|
|
static void normalize_angle(void);
|
|
static int is_small_integer(U *);
|
|
|
|
void
|
|
qpow()
|
|
{
|
|
save();
|
|
qpowf();
|
|
restore();
|
|
}
|
|
|
|
#define BASE p1
|
|
#define EXPO p2
|
|
|
|
static void
|
|
qpowf(void)
|
|
{
|
|
int expo;
|
|
unsigned int a, b, *t, *x, *y;
|
|
|
|
EXPO = pop();
|
|
BASE = pop();
|
|
|
|
// if base is 1 or exponent is 0 then return 1
|
|
|
|
if (isplusone(BASE) || iszero(EXPO)) {
|
|
push_integer(1);
|
|
return;
|
|
}
|
|
|
|
// if base is zero then return 0
|
|
|
|
if (iszero(BASE)) {
|
|
if (isnegativenumber(EXPO))
|
|
stop("divide by zero");
|
|
push(_zero);
|
|
return;
|
|
}
|
|
|
|
// if exponent is 1 then return base
|
|
|
|
if (isplusone(EXPO)) {
|
|
push(BASE);
|
|
return;
|
|
}
|
|
|
|
// if exponent is integer then power
|
|
|
|
if (isinteger(EXPO)) {
|
|
push(EXPO);
|
|
expo = pop_integer();
|
|
if (expo == (int) 0x80000000) {
|
|
// expo greater than 32 bits
|
|
push_symbol(POWER);
|
|
push(BASE);
|
|
push(EXPO);
|
|
list(3);
|
|
return;
|
|
}
|
|
x = mpow(BASE->u.q.a, abs(expo));
|
|
y = mpow(BASE->u.q.b, abs(expo));
|
|
if (expo < 0) {
|
|
t = x;
|
|
x = y;
|
|
y = t;
|
|
MSIGN(x) = MSIGN(y);
|
|
MSIGN(y) = 1;
|
|
}
|
|
p3 = alloc();
|
|
p3->k = NUM;
|
|
p3->u.q.a = x;
|
|
p3->u.q.b = y;
|
|
push(p3);
|
|
return;
|
|
}
|
|
|
|
// from here on out the exponent is NOT an integer
|
|
|
|
// if base is -1 then normalize polar angle
|
|
|
|
if (isminusone(BASE)) {
|
|
push(EXPO);
|
|
if (conjugating)
|
|
negate();
|
|
normalize_angle();
|
|
return;
|
|
}
|
|
|
|
// if base is negative then (-N)^M -> N^M * (-1)^M
|
|
|
|
if (isnegativenumber(BASE)) {
|
|
push(BASE);
|
|
negate();
|
|
push(EXPO);
|
|
power_numbers();
|
|
push_integer(-1);
|
|
push(EXPO);
|
|
power_numbers();
|
|
multiply();
|
|
return;
|
|
}
|
|
|
|
// if BASE is not an integer then power numerator and denominator
|
|
|
|
if (!isinteger(BASE)) {
|
|
push(BASE);
|
|
numerator();
|
|
push(EXPO);
|
|
power_numbers();
|
|
push(BASE);
|
|
denominator();
|
|
push(EXPO);
|
|
negate();
|
|
power_numbers();
|
|
multiply();
|
|
return;
|
|
}
|
|
|
|
// At this point BASE is a positive integer.
|
|
|
|
// If BASE is small then factor it.
|
|
|
|
if (is_small_integer(BASE)) {
|
|
push(BASE);
|
|
push(EXPO);
|
|
quickfactor();
|
|
return;
|
|
}
|
|
|
|
// At this point BASE is a positive integer and EXPO is not an integer.
|
|
|
|
if (MLENGTH(EXPO->u.q.a) > 1 || MLENGTH(EXPO->u.q.b) > 1) {
|
|
push_symbol(POWER);
|
|
push(BASE);
|
|
push(EXPO);
|
|
list(3);
|
|
return;
|
|
}
|
|
|
|
a = EXPO->u.q.a[0];
|
|
b = EXPO->u.q.b[0];
|
|
|
|
x = mroot(BASE->u.q.a, b);
|
|
|
|
if (x == 0) {
|
|
push_symbol(POWER);
|
|
push(BASE);
|
|
push(EXPO);
|
|
list(3);
|
|
return;
|
|
}
|
|
|
|
y = mpow(x, a);
|
|
|
|
mfree(x);
|
|
|
|
p3 = alloc();
|
|
|
|
p3->k = NUM;
|
|
|
|
if (MSIGN(EXPO->u.q.a) == -1) {
|
|
p3->u.q.a = mint(1);
|
|
p3->u.q.b = y;
|
|
} else {
|
|
p3->u.q.a = y;
|
|
p3->u.q.b = mint(1);
|
|
}
|
|
|
|
push(p3);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// Normalize the angle of unit imaginary, i.e. (-1) ^ N
|
|
//
|
|
// Input: N on stack (must be rational, not float)
|
|
//
|
|
// Output: Result on stack
|
|
//
|
|
// Note:
|
|
//
|
|
// n = q * d + r
|
|
//
|
|
// Example:
|
|
// n d q r
|
|
//
|
|
// (-1)^(8/3) -> (-1)^(2/3) 8 3 2 2
|
|
// (-1)^(7/3) -> (-1)^(1/3) 7 3 2 1
|
|
// (-1)^(5/3) -> -(-1)^(2/3) 5 3 1 2
|
|
// (-1)^(4/3) -> -(-1)^(1/3) 4 3 1 1
|
|
// (-1)^(2/3) -> (-1)^(2/3) 2 3 0 2
|
|
// (-1)^(1/3) -> (-1)^(1/3) 1 3 0 1
|
|
//
|
|
// (-1)^(-1/3) -> -(-1)^(2/3) -1 3 -1 2
|
|
// (-1)^(-2/3) -> -(-1)^(1/3) -2 3 -1 1
|
|
// (-1)^(-4/3) -> (-1)^(2/3) -4 3 -2 2
|
|
// (-1)^(-5/3) -> (-1)^(1/3) -5 3 -2 1
|
|
// (-1)^(-7/3) -> -(-1)^(2/3) -7 3 -3 2
|
|
// (-1)^(-8/3) -> -(-1)^(1/3) -8 3 -3 1
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#define A p1
|
|
#define Q p2
|
|
#define R p3
|
|
|
|
static void
|
|
normalize_angle(void)
|
|
{
|
|
save();
|
|
|
|
A = pop();
|
|
|
|
// integer exponent?
|
|
|
|
if (isinteger(A)) {
|
|
if (A->u.q.a[0] & 1)
|
|
push_integer(-1); // odd exponent
|
|
else
|
|
push_integer(1); // even exponent
|
|
restore();
|
|
return;
|
|
}
|
|
|
|
// floor
|
|
|
|
push(A);
|
|
bignum_truncate();
|
|
Q = pop();
|
|
|
|
if (isnegativenumber(A)) {
|
|
push(Q);
|
|
push_integer(-1);
|
|
add();
|
|
Q = pop();
|
|
}
|
|
|
|
// remainder (always positive)
|
|
|
|
push(A);
|
|
push(Q);
|
|
subtract();
|
|
R = pop();
|
|
|
|
// remainder becomes new angle
|
|
|
|
push_symbol(POWER);
|
|
push_integer(-1);
|
|
push(R);
|
|
list(3);
|
|
|
|
// negate if quotient is odd
|
|
|
|
if (Q->u.q.a[0] & 1)
|
|
negate();
|
|
|
|
restore();
|
|
}
|
|
|
|
static int
|
|
is_small_integer(U *p)
|
|
{
|
|
if (isinteger(p) && MLENGTH(p->u.q.a) == 1 && (p->u.q.a[0] & 0x80000000) == 0)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|