eigenmath/divisors.cpp

292 lines
4.2 KiB
C++

#include "stdafx.h"
//-----------------------------------------------------------------------------
//
// Generate all divisors of a term
//
// Input: Term on stack (factor * factor * ...)
//
// Output: Divisors on stack
//
//-----------------------------------------------------------------------------
#include "defs.h"
static void gen(int, int);
static void __factor_add(void);
static int __cmp(const void *, const void *);
void
divisors(void)
{
int i, h, n;
save();
h = tos - 1;
divisors_onstack();
n = tos - h;
qsort(stack + h, n, sizeof (U *), __cmp);
p1 = alloc_tensor(n);
p1->u.tensor->ndim = 1;
p1->u.tensor->dim[0] = n;
for (i = 0; i < n; i++)
p1->u.tensor->elem[i] = stack[i];
tos = h;
push(p1);
restore();
}
void
divisors_onstack(void)
{
int h, i, k, n;
save();
p1 = pop();
h = tos;
// push all of the term's factors
if (isnum(p1)) {
push(p1);
factor_small_number();
} else if (car(p1) == symbol(ADD)) {
push(p1);
__factor_add();
//printf(">>>\n");
//for (i = h; i < tos; i++)
//print(stdout, stack[i]);
//printf("<<<\n");
} else if (car(p1) == symbol(MULTIPLY)) {
p1 = cdr(p1);
if (isnum(car(p1))) {
push(car(p1));
factor_small_number();
p1 = cdr(p1);
}
while (iscons(p1)) {
p2 = car(p1);
if (car(p2) == symbol(POWER)) {
push(cadr(p2));
push(caddr(p2));
} else {
push(p2);
push(one);
}
p1 = cdr(p1);
}
} else if (car(p1) == symbol(POWER)) {
push(cadr(p1));
push(caddr(p1));
} else {
push(p1);
push(one);
}
k = tos;
// contruct divisors by recursive descent
push(one);
gen(h, k);
// move
n = tos - k;
for (i = 0; i < n; i++)
stack[h + i] = stack[k + i];
tos = h + n;
restore();
}
//-----------------------------------------------------------------------------
//
// Generate divisors
//
// Input: Base-exponent pairs on stack
//
// h first pair
//
// k just past last pair
//
// Output: Divisors on stack
//
// For example, factor list 2 2 3 1 results in 6 divisors,
//
// 1
// 3
// 2
// 6
// 4
// 12
//
//-----------------------------------------------------------------------------
#define ACCUM p1
#define BASE p2
#define EXPO p3
static void
gen(int h, int k)
{
int expo, i;
save();
ACCUM = pop();
if (h == k) {
push(ACCUM);
restore();
return;
}
BASE = stack[h + 0];
EXPO = stack[h + 1];
push(EXPO);
expo = pop_integer();
for (i = 0; i <= abs(expo); i++) {
push(ACCUM);
push(BASE);
push_integer(sign(expo) * i);
power();
multiply();
gen(h + 2, k);
}
restore();
}
//-----------------------------------------------------------------------------
//
// Factor ADD expression
//
// Input: Expression on stack
//
// Output: Factors on stack
//
// Each factor consists of two expressions, the factor itself followed
// by the exponent.
//
//-----------------------------------------------------------------------------
void
__factor_add(void)
{
save();
p1 = pop();
// get gcd of all terms
p3 = cdr(p1);
push(car(p3));
p3 = cdr(p3);
while (iscons(p3)) {
push(car(p3));
gcd();
p3 = cdr(p3);
}
// check gcd
p2 = pop();
if (isplusone(p2)) {
push(p1);
push(one);
restore();
return;
}
// push factored gcd
if (isnum(p2)) {
push(p2);
factor_small_number();
} else if (car(p2) == symbol(MULTIPLY)) {
p3 = cdr(p2);
if (isnum(car(p3))) {
push(car(p3));
factor_small_number();
} else {
push(car(p3));
push(one);
}
p3 = cdr(p3);
while (iscons(p3)) {
push(car(p3));
push(one);
p3 = cdr(p3);
}
} else {
push(p2);
push(one);
}
// divide each term by gcd
push(p2);
inverse();
p2 = pop();
push(zero);
p3 = cdr(p1);
while (iscons(p3)) {
push(p2);
push(car(p3));
multiply();
add();
p3 = cdr(p3);
}
push(one);
restore();
}
static int
__cmp(const void *p1, const void *p2)
{
return cmp_expr(*((U **) p1), *((U **) p2));
}
static char *s[] = {
"divisors(12)",
"(1,2,3,4,6,12)",
"divisors(-12)",
"(1,2,3,4,6,12)",
"divisors(a)",
"(1,a)",
"divisors(-a)",
"(1,a)",
"divisors(+3*x+3)",
"(1,3,1+x,3+3*x)",
"divisors(+3*x-3)",
"(1,3,-3+3*x,-1+x)",
"divisors(-3*x+3)",
"(1,3,1-x,3-3*x)",
"divisors(-3*x-3)",
"(1,3,1+x,3+3*x)",
};
void
test_divisors(void)
{
test(__FILE__, s, sizeof s / sizeof (char *));
}