eigenmath/quickfactor.cpp

157 lines
2.1 KiB
C++

//-----------------------------------------------------------------------------
//
// Factor small numerical powers
//
// Input: tos-2 Base (positive integer < 2^31 - 1)
//
// tos-1 Exponent
//
// Output: Expr on stack
//
//-----------------------------------------------------------------------------
#include "stdafx.h"
#include "defs.h"
#define BASE p1
#define EXPO p2
static void quickpower(void);
void
quickfactor(void)
{
int h, i, n;
U **s;
save();
EXPO = pop();
BASE = pop();
h = tos;
push(BASE);
factor_small_number();
n = tos - h;
s = stack + h;
for (i = 0; i < n; i += 2) {
push(s[i]); // factored base
push(s[i + 1]); // factored exponent
push(EXPO);
multiply();
quickpower();
}
// stack has n results from factor_number_raw()
// on top of that are all the expressions from quickpower()
// multiply the quickpower() results
multiply_all(tos - h - n);
p1 = pop();
tos = h;
push(p1);
restore();
}
// BASE is a prime number so power is simpler
static void
quickpower(void)
{
int expo;
save();
EXPO = pop();
BASE = pop();
push(EXPO);
bignum_truncate();
p3 = pop();
push(EXPO);
push(p3);
subtract();
p4 = pop();
// fractional part of EXPO
if (!iszero(p4)) {
push_symbol(POWER);
push(BASE);
push(p4);
list(3);
}
push(p3);
expo = pop_integer();
if (expo == (int) 0x80000000) {
push_symbol(POWER);
push(BASE);
push(p3);
list(3);
restore();
return;
}
if (expo == 0) {
restore();
return;
}
push(BASE);
bignum_power_number(expo);
restore();
}
void
test_quickfactor(void)
{
int base, expo, i, j, h;
logout("testing quickfactor\n");
for (i = 2; i < 10001; i++) {
base = i;
push_integer(base);
push_integer(1);
quickfactor();
h = tos;
j = 0;
while (base > 1) {
expo = 0;
while (base % primetab[j] == 0) {
base /= primetab[j];
expo++;
}
if (expo) {
push_integer(primetab[j]);
push_integer(expo);
quickpower();
}
j++;
}
multiply_all(tos - h);
p2 = pop();
p1 = pop();
if (!equal(p1, p2)) {
logout("failed\n");
print_lisp(p1);
print_lisp(p2);
errout();
}
}
logout("ok\n");
}