eigenmath/legendre.cpp

320 lines
4.2 KiB
C++

/* Legendre function
Example
legendre(x,3,0)
Result
5 3 3
--- x - --- x
2 2
The computation uses the following recurrence relation.
P(x,0) = 1
P(x,1) = x
n*P(x,n) = (2*(n-1)+1)*x*P(x,n-1) - (n-1)*P(x,n-2)
In the "for" loop we have i = n-1 so the recurrence relation becomes
(i+1)*P(x,n) = (2*i+1)*x*P(x,n-1) - i*P(x,n-2)
For m > 0
P(x,n,m) = (-1)^m * (1-x^2)^(m/2) * d^m/dx^m P(x,n)
*/
#include "stdafx.h"
#include "defs.h"
void
eval_legendre(void)
{
// 1st arg
push(cadr(p1));
eval();
// 2nd arg
push(caddr(p1));
eval();
// 3rd arg (optional)
push(cadddr(p1));
eval();
p2 = pop();
if (p2 == symbol(NIL))
push_integer(0);
else
push(p2);
legendre();
}
#define X p1
#define N p2
#define M p3
#define Y p4
#define Y0 p5
#define Y1 p6
static void __legendre(void), __legendre2(int, int), __legendre3(int);
void
legendre(void)
{
save();
__legendre();
restore();
}
static void
__legendre(void)
{
int m, n;
M = pop();
N = pop();
X = pop();
push(N);
n = pop_integer();
push(M);
m = pop_integer();
if (n < 0 || m < 0) {
push_symbol(LEGENDRE);
push(X);
push(N);
push(M);
list(4);
return;
}
if (issymbol(X))
__legendre2(n, m);
else {
Y = X; // do this when X is an expr
X = symbol(SECRETX);
__legendre2(n, m);
X = Y;
push(symbol(SECRETX));
push(X);
subst();
eval();
}
__legendre3(m);
}
static void
__legendre2(int n, int m)
{
int i;
push_integer(1);
push_integer(0);
Y1 = pop();
// i=1 Y0 = 0
// Y1 = 1
// ((2*i+1)*x*Y1 - i*Y0) / i = x
//
// i=2 Y0 = 1
// Y1 = x
// ((2*i+1)*x*Y1 - i*Y0) / i = -1/2 + 3/2*x^2
//
// i=3 Y0 = x
// Y1 = -1/2 + 3/2*x^2
// ((2*i+1)*x*Y1 - i*Y0) / i = -3/2*x + 5/2*x^3
for (i = 0; i < n; i++) {
Y0 = Y1;
Y1 = pop();
push_integer(2 * i + 1);
push(X);
multiply();
push(Y1);
multiply();
push_integer(i);
push(Y0);
multiply();
subtract();
push_integer(i + 1);
divide();
}
for (i = 0; i < m; i++) {
push(X);
derivative();
}
}
// tos = tos * (-1)^m * (1-x^2)^(m/2)
static void
__legendre3(int m)
{
if (m == 0)
return;
if (car(X) == symbol(COS)) {
push(cadr(X));
sine();
square();
} else if (car(X) == symbol(SIN)) {
push(cadr(X));
cosine();
square();
} else {
push_integer(1);
push(X);
square();
subtract();
}
push_integer(m);
push_rational(1, 2);
multiply();
power();
multiply();
if (m % 2)
negate();
}
#if SELFTEST
static char *s[] = {
"legendre(x,n)",
"legendre(x,n,0)",
"legendre(x,n,m)",
"legendre(x,n,m)",
"legendre(x,0)-1",
"0",
"legendre(x,1)-x",
"0",
"legendre(x,2)-1/2*(3*x^2-1)",
"0",
"legendre(x,3)-1/2*(5*x^3-3*x)",
"0",
"legendre(x,4)-1/8*(35*x^4-30*x^2+3)",
"0",
"legendre(x,5)-1/8*(63*x^5-70*x^3+15*x)",
"0",
"legendre(x,6)-1/16*(231*x^6-315*x^4+105*x^2-5)",
"0",
"legendre(x,0,0)-1",
"0",
"legendre(x,1,0)-x",
"0",
"legendre(x,1,1)+(1-x^2)^(1/2)",
"0",
"legendre(x,2,0)-1/2*(3*x^2-1)",
"0",
"legendre(x,2,1)+3*x*(1-x^2)^(1/2)",
"0",
"legendre(x,2,2)-3*(1-x^2)",
"0",
"legendre(x,3,0)-1/2*x*(5*x^2-3)",
"0",
"legendre(x,3,1)-3/2*(1-5*x^2)*(1-x^2)^(1/2)",
"0",
"legendre(x,3,2)-15*x*(1-x^2)",
"0",
"legendre(x,3,3)+15*(1-x^2)^(3/2)",
"0",
"legendre(x,4,0)-1/8*(35*x^4-30*x^2+3)",
"0",
"legendre(x,4,1)-5/2*x*(3-7*x^2)*(1-x^2)^(1/2)",
"0",
"legendre(x,4,2)-15/2*(7*x^2-1)*(1-x^2)",
"0",
"legendre(x,4,3)+105*x*(1-x^2)^(3/2)",
"0",
"legendre(x,4,4)-105*(1-x^2)^2",
"0",
"legendre(x,5,0)-1/8*x*(63*x^4-70*x^2+15)",
"0",
"legendre(cos(theta),0,0)-1",
"0",
"legendre(cos(theta),1,0)-cos(theta)",
"0",
"legendre(cos(theta),1,1)+sin(theta)",
"0",
"legendre(cos(theta),2,0)-1/2*(3*cos(theta)^2-1)",
"0",
"legendre(cos(theta),2,1)+3*sin(theta)*cos(theta)",
"0",
"legendre(cos(theta),2,2)-3*sin(theta)^2",
"0",
"legendre(cos(theta),3,0)-1/2*cos(theta)*(5*cos(theta)^2-3)",
"0",
"legendre(cos(theta),3,1)+3/2*(5*cos(theta)^2-1)*sin(theta)",
"0",
"legendre(cos(theta),3,2)-15*cos(theta)*sin(theta)^2",
"0",
"legendre(cos(theta),3,3)+15*sin(theta)^3",
"0",
"legendre(a-b,10)-eval(subst(a-b,x,legendre(x,10)))",
"0",
};
void
test_legendre(void)
{
test(__FILE__, s, sizeof s / sizeof (char *));
}
#endif