eigenmath/multiply.cpp

724 lines
11 KiB
C++

// Symbolic multiplication
#include "stdafx.h"
#include "defs.h"
extern void append(void);
static void parse_p1(void);
static void parse_p2(void);
static void __normalize_radical_factors(int);
void
multiply(void)
{
if (esc_flag)
stop("escape key stop");
if (isnum(stack[tos - 2]) && isnum(stack[tos - 1]))
multiply_numbers();
else {
save();
yymultiply();
restore();
}
}
void
yymultiply(void)
{
int h, i, n;
// pop operands
p2 = pop();
p1 = pop();
h = tos;
// is either operand zero?
if (iszero(p1) || iszero(p2)) {
push(zero);
return;
}
// is either operand a sum?
if (expanding && isadd(p1)) {
p1 = cdr(p1);
push(zero);
while (iscons(p1)) {
push(car(p1));
push(p2);
multiply();
add();
p1 = cdr(p1);
}
return;
}
if (expanding && isadd(p2)) {
p2 = cdr(p2);
push(zero);
while (iscons(p2)) {
push(p1);
push(car(p2));
multiply();
add();
p2 = cdr(p2);
}
return;
}
// scalar times tensor?
if (!istensor(p1) && istensor(p2)) {
push(p1);
push(p2);
scalar_times_tensor();
return;
}
// tensor times scalar?
if (istensor(p1) && !istensor(p2)) {
push(p1);
push(p2);
tensor_times_scalar();
return;
}
// adjust operands
if (car(p1) == symbol(MULTIPLY))
p1 = cdr(p1);
else {
push(p1);
list(1);
p1 = pop();
}
if (car(p2) == symbol(MULTIPLY))
p2 = cdr(p2);
else {
push(p2);
list(1);
p2 = pop();
}
// handle numerical coefficients
if (isnum(car(p1)) && isnum(car(p2))) {
push(car(p1));
push(car(p2));
multiply_numbers();
p1 = cdr(p1);
p2 = cdr(p2);
} else if (isnum(car(p1))) {
push(car(p1));
p1 = cdr(p1);
} else if (isnum(car(p2))) {
push(car(p2));
p2 = cdr(p2);
} else
push(one);
parse_p1();
parse_p2();
while (iscons(p1) && iscons(p2)) {
// if (car(p1)->gamma && car(p2)->gamma) {
// combine_gammas(h);
// p1 = cdr(p1);
// p2 = cdr(p2);
// parse_p1();
// parse_p2();
// continue;
// }
if (caar(p1) == symbol(OPERATOR) && caar(p2) == symbol(OPERATOR)) {
push_symbol(OPERATOR);
push(cdar(p1));
push(cdar(p2));
append();
cons();
p1 = cdr(p1);
p2 = cdr(p2);
parse_p1();
parse_p2();
continue;
}
switch (cmp_expr(p3, p4)) {
case -1:
push(car(p1));
p1 = cdr(p1);
parse_p1();
break;
case 1:
push(car(p2));
p2 = cdr(p2);
parse_p2();
break;
case 0:
combine_factors(h);
p1 = cdr(p1);
p2 = cdr(p2);
parse_p1();
parse_p2();
break;
default:
stop("internal error 2");
break;
}
}
// push remaining factors, if any
while (iscons(p1)) {
push(car(p1));
p1 = cdr(p1);
}
while (iscons(p2)) {
push(car(p2));
p2 = cdr(p2);
}
// normalize radical factors
// example: 2*2(-1/2) -> 2^(1/2)
// must be done after merge because merge may produce radical
// example: 2^(1/2-a)*2^a -> 2^(1/2)
__normalize_radical_factors(h);
// this hack should not be necessary, unless power returns a multiply
//for (i = h; i < tos; i++) {
// if (car(stack[i]) == symbol(MULTIPLY)) {
// multiply_all(tos - h);
// return;
// }
//}
if (expanding) {
for (i = h; i < tos; i++) {
if (isadd(stack[i])) {
multiply_all(tos - h);
return;
}
}
}
// n is the number of result factors on the stack
n = tos - h;
if (n == 1)
return;
// discard integer 1
if (isrational(stack[h]) && equaln(stack[h], 1)) {
if (n == 2) {
p7 = pop();
pop();
push(p7);
} else {
stack[h] = symbol(MULTIPLY);
list(n);
}
return;
}
list(n);
p7 = pop();
push_symbol(MULTIPLY);
push(p7);
cons();
}
// Decompose a factor into base and power.
//
// input: car(p1) factor
//
// output: p3 factor's base
//
// p5 factor's power (possibly 1)
static void
parse_p1(void)
{
p3 = car(p1);
p5 = one;
if (car(p3) == symbol(POWER)) {
p5 = caddr(p3);
p3 = cadr(p3);
}
}
// Decompose a factor into base and power.
//
// input: car(p2) factor
//
// output: p4 factor's base
//
// p6 factor's power (possibly 1)
static void
parse_p2(void)
{
p4 = car(p2);
p6 = one;
if (car(p4) == symbol(POWER)) {
p6 = caddr(p4);
p4 = cadr(p4);
}
}
void
combine_factors(int h)
{
push(p4);
push(p5);
push(p6);
add();
power();
p7 = pop();
if (isnum(p7)) {
push(stack[h]);
push(p7);
multiply_numbers();
stack[h] = pop();
} else if (car(p7) == symbol(MULTIPLY)) {
// power can return number * factor (i.e. -1 * i)
if (isnum(cadr(p7)) && cdddr(p7) == symbol(NIL)) {
push(stack[h]);
push(cadr(p7));
multiply_numbers();
stack[h] = pop();
push(caddr(p7));
} else
push(p7);
} else
push(p7);
}
int gp[17][17] = {
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,1,-6,-7,-8,-3,-4,-5,13,14,15,-16,9,10,11,-12},
{0,0,6,-1,-11,10,-2,-15,14,12,-5,4,-9,16,-8,7,-13},
{0,0,7,11,-1,-9,15,-2,-13,5,12,-3,-10,8,16,-6,-14},
{0,0,8,-10,9,-1,-14,13,-2,-4,3,12,-11,-7,6,16,-15},
{0,0,3,2,15,-14,1,11,-10,16,-8,7,13,12,-5,4,9},
{0,0,4,-15,2,13,-11,1,9,8,16,-6,14,5,12,-3,10},
{0,0,5,14,-13,2,10,-9,1,-7,6,16,15,-4,3,12,11},
{0,0,13,12,-5,4,16,-8,7,-1,-11,10,-3,-2,-15,14,-6},
{0,0,14,5,12,-3,8,16,-6,11,-1,-9,-4,15,-2,-13,-7},
{0,0,15,-4,3,12,-7,6,16,-10,9,-1,-5,-14,13,-2,-8},
{0,0,16,-9,-10,-11,-13,-14,-15,-3,-4,-5,1,-6,-7,-8,2},
{0,0,9,-16,8,-7,-12,5,-4,-2,-15,14,6,-1,-11,10,3},
{0,0,10,-8,-16,6,-5,-12,3,15,-2,-13,7,11,-1,-9,4},
{0,0,11,7,-6,-16,4,-3,-12,-14,13,-2,8,-10,9,-1,5},
{0,0,12,13,14,15,9,10,11,-6,-7,-8,-2,-3,-4,-5,-1}
};
#if 0
static void
combine_gammas(int h)
{
int n;
n = gp[(int) p1->gamma][(int) p2->gamma];
if (n < 0) {
n = -n;
push(stack[h]);
negate();
stack[h] = pop();
}
if (n > 1)
push(_gamma[n]);
}
#endif
void
multiply_noexpand(void)
{
int x;
x = expanding;
expanding = 0;
multiply();
expanding = x;
}
// multiply n factors on stack
void
multiply_all(int n)
{
int h, i;
if (n == 1)
return;
if (n == 0) {
push(one);
return;
}
h = tos - n;
push(stack[h]);
for (i = 1; i < n; i++) {
push(stack[h + i]);
multiply();
}
stack[h] = pop();
tos = h + 1;
}
void
multiply_all_noexpand(int n)
{
int x;
x = expanding;
expanding = 0;
multiply_all(n);
expanding = x;
}
//-----------------------------------------------------------------------------
//
// Symbolic division
//
// Input: Dividend and divisor on stack
//
// Output: Quotient on stack
//
//-----------------------------------------------------------------------------
void
divide(void)
{
if (isnum(stack[tos - 2]) && isnum(stack[tos - 1]))
divide_numbers();
else {
inverse();
multiply();
}
}
void
inverse(void)
{
if (isnum(stack[tos - 1]))
invert_number();
else {
push_integer(-1);
power();
}
}
void
reciprocate(void)
{
if (isnum(stack[tos - 1]))
invert_number();
else {
push_integer(-1);
power();
}
}
void
negate(void)
{
if (isnum(stack[tos - 1]))
negate_number();
else {
push_integer(-1);
multiply();
}
}
void
negate_expand(void)
{
int x;
x = expanding;
expanding = 1;
negate();
expanding = x;
}
void
negate_noexpand(void)
{
int x;
x = expanding;
expanding = 0;
negate();
expanding = x;
}
//-----------------------------------------------------------------------------
//
// Normalize radical factors
//
// Input: stack[h] Coefficient factor, possibly 1
//
// stack[h + 1] Second factor
//
// stack[tos - 1] Last factor
//
// Output: Reduced coefficent and normalized radicals (maybe)
//
// Example: 2*2^(-1/2) -> 2^(1/2)
//
// (power number number) is guaranteed to have the following properties:
//
// 1. Base is an integer
//
// 2. Absolute value of exponent < 1
//
// These properties are assured by the power function.
//
//-----------------------------------------------------------------------------
#define A p1
#define B p2
#define BASE p3
#define EXPO p4
#define TMP p5
static int __is_radical_number(U *);
static void
__normalize_radical_factors(int h)
{
int i;
// if coeff is 1 or floating then don't bother
if (isplusone(stack[h]) || isminusone(stack[h]) || isdouble(stack[h]))
return;
// if no radicals then don't bother
for (i = h + 1; i < tos; i++)
if (__is_radical_number(stack[i]))
break;
if (i == tos)
return;
// ok, try to simplify
save();
// numerator
push(stack[h]);
mp_numerator();
A = pop();
for (i = h + 1; i < tos; i++) {
if (isplusone(A) || isminusone(A))
break;
if (!__is_radical_number(stack[i]))
continue;
BASE = cadr(stack[i]);
EXPO = caddr(stack[i]);
// exponent must be negative
if (!isnegativenumber(EXPO))
continue;
// numerator divisible by BASE?
push(A);
push(BASE);
divide();
TMP = pop();
if (!isinteger(TMP))
continue;
// reduce numerator
A = TMP;
// invert radical
push_symbol(POWER);
push(BASE);
push(one);
push(EXPO);
add();
list(3);
stack[i] = pop();
}
// denominator
push(stack[h]);
mp_denominator();
B = pop();
for (i = h + 1; i < tos; i++) {
if (isplusone(B))
break;
if (!__is_radical_number(stack[i]))
continue;
BASE = cadr(stack[i]);
EXPO = caddr(stack[i]);
// exponent must be positive
if (isnegativenumber(EXPO))
continue;
// denominator divisible by BASE?
push(B);
push(BASE);
divide();
TMP = pop();
if (!isinteger(TMP))
continue;
// reduce denominator
B = TMP;
// invert radical
push_symbol(POWER);
push(BASE);
push(EXPO);
push(one);
subtract();
list(3);
stack[i] = pop();
}
// reconstitute the coefficient
push(A);
push(B);
divide();
stack[h] = pop();
restore();
}
// don't include i
static int
__is_radical_number(U *p)
{
// don't use i
if (car(p) == symbol(POWER) && isnum(cadr(p)) && isnum(caddr(p)) && !isminusone(cadr(p)))
return 1;
else
return 0;
}
//-----------------------------------------------------------------------------
//
// > a*hilbert(2)
// ((a,1/2*a),(1/2*a,1/3*a))
//
// Note that "a" is presumed to be a scalar. Is this correct?
//
// Yes, because "*" has no meaning if "a" is a tensor.
// To multiply tensors, "dot" or "outer" should be used.
//
// > dot(a,hilbert(2))
// dot(a,((1,1/2),(1/2,1/3)))
//
// In this case "a" could be a scalar or tensor so the result is not
// expanded.
//
//-----------------------------------------------------------------------------
#if SELFTEST
static char *s[] = {
"0*a",
"0",
"a*0",
"0",
"1*a",
"a",
"a*1",
"a",
"a*a",
"a^2",
"a^2*a",
"a^3",
"a*a^2",
"a^3",
"a^2*a^2",
"a^4",
"2^a*2^(3-a)", // symbolic exponents cancel
"8",
"sqrt(2)/2",
"2^(-1/2)",
"2/sqrt(2)",
"2^(1/2)",
"-sqrt(2)/2",
"-1/(2^(1/2))",
"2^(1/2-a)*2^a/10",
"1/(5*2^(1/2))",
"i/4",
"1/4*i",
"1/(4 i)",
"-1/4*i",
// ensure 1.0 is not discarded
"1.0 pi 1/2",
"0.5*pi",
"1.0 1/2 pi",
"0.5*pi",
};
void
test_multiply(void)
{
test(__FILE__, s, sizeof s / sizeof (char *));
}
#endif