eigenmath/transform.cpp

126 lines
1.8 KiB
C++

/* Transform an expression using table look-up
The expression and free variable are on the stack.
The argument s is a null terminated list of transform rules.
For example, see itab.cpp
Internally, the following symbols are used:
F input expression
X free variable, i.e. F of X
A template expression
B result expression
C list of conditional expressions
*/
#include "stdafx.h"
#include "defs.h"
// p1 and p2 are tmps
#define F p3
#define X p4
#define A p5
#define B p6
#define C p7
void
transform(char **s)
{
int h;
save();
X = pop();
F = pop();
// save symbol context in case eval(B) below calls transform
push(get_binding(symbol(METAA)));
push(get_binding(symbol(METAB)));
push(get_binding(symbol(METAX)));
set_binding(symbol(METAX), X);
// put constants in F(X) on the stack
h = tos;
push_integer(1);
push(F);
push(X);
polyform(); // collect coefficients of x, x^2, etc.
push(X);
decomp();
while (*s) {
scan_meta(*s);
p1 = pop();
A = cadr(p1);
B = caddr(p1);
C = cdddr(p1);
if (f_equals_a(h))
break;
s++;
}
tos = h;
if (*s) {
push(B);
eval();
p1 = pop();
} else
p1 = symbol(NIL);
set_binding(symbol(METAX), pop());
set_binding(symbol(METAB), pop());
set_binding(symbol(METAA), pop());
push(p1);
restore();
}
// search for a METAA and METAB such that F = A
int
f_equals_a(int h)
{
int i, j;
for (i = h; i < tos; i++) {
set_binding(symbol(METAA), stack[i]);
for (j = h; j < tos; j++) {
set_binding(symbol(METAB), stack[j]);
p1 = C; // are conditions ok?
while (iscons(p1)) {
push(car(p1));
eval();
p2 = pop();
if (iszero(p2))
break;
p1 = cdr(p1);
}
if (iscons(p1)) // no, try next j
continue;
push(F); // F = A?
push(A);
eval();
subtract();
p1 = pop();
if (iszero(p1))
return 1; // yes
}
}
return 0; // no
}