eigenmath/doc/manual/greens-theorem.tex

124 lines
2.2 KiB
TeX
Raw Permalink Normal View History

2008-08-25 02:07:15 +02:00
\subsection{Green's theorem}
2007-07-28 17:04:01 +02:00
\index{Green's theorem}
Green's theorem tells us that
$$\oint P\,dx+Q\,dy=\int\!\!\!\int
\left({\partial Q\over\partial x}-{\partial P\over\partial y}\right)
dx\,dy$$
2008-12-29 23:06:56 +01:00
\medskip
\noindent
Example 1.
2007-07-28 17:04:01 +02:00
Evaluate $\oint (2x^3-y^3)\,dx+(x^3+y^3)\,dy$ around the circle
$x^2+y^2=1$ using Green's theorem.\footnote{
Wilfred Kaplan, {\it Advanced Calculus, 5th Edition,} 287.}
\medskip
\noindent
2007-07-28 17:09:44 +02:00
It turns out that Eigenmath cannot solve the double integral over
2007-07-28 17:20:28 +02:00
$x$ and $y$ directly.
2007-07-28 17:24:36 +02:00
Polar coordinates are used instead.
2007-07-28 17:04:01 +02:00
\medskip
\verb$P=2x^3-y^3$
\verb$Q=x^3+y^3$
\verb$f=d(Q,x)-d(P,y)$
\verb$x=r*cos(theta)$
\verb$y=r*sin(theta)$
\verb$defint(f*r,r,0,1,theta,0,2pi)$
$${3\over2}\pi$$
\medskip
\noindent
The $defint$ integrand is $f{*}r$ because $r\,dr\,d\theta=dx\,dy$.
2007-07-29 18:27:18 +02:00
\medskip
\noindent
2007-07-29 18:31:32 +02:00
Now let us try computing the line integral side of Green's theorem
and see if we get the same result.
2007-07-29 21:49:50 +02:00
We need to use the trick of converting sine and cosine to exponentials
so that Eigenmath can find a solution.
2007-07-29 18:27:18 +02:00
\medskip
\verb$x=cos(t)$
\verb$y=sin(t)$
\verb$P=2x^3-y^3$
\verb$Q=x^3+y^3$
\verb$f=P*d(x,t)+Q*d(y,t)$
\verb$f=circexp(f)$
\verb$defint(f,t,0,2pi)$
$${3\over2}\pi$$
2008-12-29 23:06:56 +01:00
\newpage
\noindent
Example 2.
2008-12-08 01:01:09 +01:00
Compute both sides of Green's theorem for
$F=(1-y,x)$ over the disk $x^2+y^2\le4$.
\medskip
\noindent
First compute the line integral along the boundary of the disk.
Note that the radius of the disk is 2.
\medskip
\verb$--Line integral$
\verb$P=1-y$
\verb$Q=x$
\verb$x=2*cos(t)$
\verb$y=2*sin(t)$
\verb$defint(P*d(x,t)+Q*d(y,t),t,0,2pi)$
$$8\pi$$
\verb$--Surface integral$
\verb$x=quote(x) --remove parametrization of x$
\verb$y=quote(y) --remove parametrization of y$
\verb$h=sqrt(4-x^2)$
\verb$defint(d(Q,x)-d(P,y),y,-h,h,x,-2,2)$
$$8\pi$$
\verb$--Bonus point: Compute the surface integral using polar coordinates.$
\verb$f=d(Q,x)-d(P,y) --do before change of coordinates$
\verb$x=r*cos(theta)$
\verb$y=r*sin(theta)$
\verb$defint(f*r,r,0,2,theta,0,2pi)$
$$8\pi$$
\verb$defint(f*r,theta,0,2pi,r,0,2) --try integrating over theta first$
$$8\pi$$
\medskip
\noindent
In this case, Eigenmath solved both forms of the polar integral.
However, in cases where Eigenmath fails to solve a double integral, try
changing the order of integration.