40 lines
799 B
HTML
40 lines
799 B
HTML
|
Simple Lisp
|
||
|
|
||
|
<pre>
|
||
|
[roscoe ~/lisp]$ gcc -o lisp lisp.c
|
||
|
[roscoe ~/lisp]$ ./lisp example.lisp
|
||
|
Bondi metric...
|
||
|
Is the Einstein tensor GUU divergence-free?
|
||
|
t
|
||
|
> (length GUU)
|
||
|
280
|
||
|
> (length (covariant-derivative-of-up-up GUU))
|
||
|
6723
|
||
|
> ^C
|
||
|
[roscoe ~/lisp]$ ./lisp example2.lisp
|
||
|
connection coefficients (p. 210)
|
||
|
t
|
||
|
divergence of einstein is zero (p. 222)
|
||
|
t
|
||
|
computing riemann tensor (p. 219)
|
||
|
t
|
||
|
symmetry of covariant derivative (p. 252)
|
||
|
t
|
||
|
covariant derivative chain rule (p. 252)
|
||
|
t
|
||
|
additivity of covariant derivative (p. 257)
|
||
|
t
|
||
|
riemann is antisymmetric on last two indices (p. 286)
|
||
|
t
|
||
|
riemann vanishes when antisymmetrized on last three indices (p. 286)
|
||
|
t
|
||
|
double dual of riemann (p. 325)
|
||
|
t
|
||
|
noncommutation of covariant derivatives (p. 389)
|
||
|
t
|
||
|
bondi metric
|
||
|
t
|
||
|
t
|
||
|
>
|
||
|
</pre>
|