eigenmath/doc/ross/ross-3.1.tex

44 lines
809 B
TeX

\beginsection{3.1}
(a) Which of the properties A1--A4, M1--M4, DL, O1--O5 fail for the
natural numbers $N$?
\medskip
A1. $a+(b+c)=(a+b+c)$
A2. $a+b=b+a$
A3. $a+0=a$
A4. For each $a$ there is as element $-a$ such that $a+(-a)=0$.
{\it Fails, no negative numbers.}
M1. $a(bc)=(ab)c$
M2. $ab=ba$
M3. $a\cdot1=a$
M4. For each $a\ne0$ there is an element $a^{-1}$ such that $aa^{-1}=1$.
{\it Fails, no multiplicative inverse.}
DL. $a(b+c)=ab+ac$
O1. Either $a\le b$ or $b\le a$.
O2. If $a\le b$ and $b\le a$ then $a=b$.
O3. If $a\le b$ and $b\le c$ then $a\le c$.
O4. If $a\le b$ then $a+c\le b+c$.
O5. If $a\le b$ and $0\le c$ then $ac\le bc$.
{\it Interesting since $0\not\in N$.}
\medskip
(b) Which of these properties fail for the set of integers $Z$?
\medskip
M4, no multiplicative inverse.